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CHAPTER 1. INTRODUCTION 

The purpose of data compression is to represent data as efficiently 

as possible without loss of important information. This generally involves 

the identification and removal of unnecessary or redundant information 

contained in the data. Most data are represented in such a way as to 

make them easily understandable or easy to process. This, however, 

generally results in significant data redundancy. 

The need for data reduction arises whenever there is a limitation 

on space or time. Although advances in hardware storage capacities and 

transmission speeds have been made in recent years, the need for data 

compression has also steadily increased. The demand for storage capacity 

and transmission speed always seems to be a step ahead of the current 

technology. Storage devices that would have been viewed as gigantic 

only a few years ago seem quite restrictive today. There is no evidence 

that this trend will be soon to pass. With multimedia applications 

gaining popularity, the demand for transmission speed and storage space 

is increasing rapidly. The multimedia areas of audio, speech, text, 

images and video all rely on the availability of good data compression 

schemes. A good example of this need is full motion digitized video 

which requires approximately 28 megabytes of data every second. Also, 

the entertainment industry has recently been interested in the technology 

of "video-on-demand" as an alternative to the rental of videotapes. Such 

a system would require the transmission and storage of hundreds of 

gigabytes of data for a two hour movie. Data compression is required to 

avoid the need for expensive high speed transmission networks. In 

general, data compression allows us the maximal use of the resources 

currently available. 

When evaluating the performance of a data compression scheme, 

there are a number of important factors to consider. The most obvious 

factor is of course the amount of compression provided by the method. 

Some applications require very large compression factors while others 
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may be less demanding. Another important factor is the speed of the 

compression and decompression. In situations where the data is being 

compressed for faster transmission, it is important that the time required 

to compress and decompress the data does not greatly reduce the benefits 

of data compression. Also, in applications such as audio, speech, and 

video, the compression and especially the decompression must be 

performed in real time so fast schemes are required. The memory 

requirement of a compression approach is also very important since large 

storage hardware is not desirable. 

Another factor that must be considered is the use of lossless or 

lossy data compression methods. In loss less compression, there is a need 

for the reproduction of the data to be exact. For example, in most 

computer applications, such as computer software programs or text 

documents, any amount of error introduced by compression could prove to 

be disastrous. Ideally, data would always be represented without error, 

however, only modest amounts of compression are generally achievable 

with these methods. In applications where there is a need for higher 

amounts of compression and the interpretation of the data is performed 

by the human perceptual system, some degree of loss may be tolerable. 

The advantage of lossy representations is that they generally achieve 

compressions many times greater than lossless methods. In many 

applications, a combination of lossy and lossless methods is used in order 

to achieve the best possible compression performance. 

One type of lossy compression method that has gained widespread 

attention in recent years is vector quantization (VQ). VQ has shown the 

ability to achieve very high compression ratios while maintaining good 

subjective quality. VQ provides large amounts of compression by removal 

of redundancies due to statistical dependencies that generally exist 

between samples. One advantage of VQ is that the decoder is very easy 

to implement making it attractive for applications where the data are 

compressed once but decompressed many times, such as archival of 

medical images. This is also attractive for producing inexpensive 
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decoding hardware for commercial applications. For example, when data 

are compressed once and transmitted to many users, inexpensive decoding 

hardware is desired. 

VQ provides the best possible performance of any block coding 

technique for a given block size [1]. However, VQ is often limited to very 

small block sizes due to storage and computational complexities. The 

performance of VQ is directly related to the block size used, so this 

limitation in block size affects the achievable performance. Much of the 

research being done in the area of VQ is related to the task of reducing 

the computational burden so that larger block sizes can be used. 

Just as the interest in VQ has grown in recent years, interest in 

the lossless compression technique of arithmetic coding has also 

increased. Although the underlying concepts of arithmetic coding have 

been known since the late 40's, practical implementations of the 

technique were not discovered until the mid 70's. Refinements were 

made in the late 70's to allow efficient implementations, however, the 

technique still has not seen widespread popularity. 

As with most lossless techniques, arithmetic coding removes 

redundancies due to non-uniform distribution of the message symbols. 

The basic idea behind all lossless techniques is to assign a variable 

number of bits to symbols depending on their probabilities of occurrence. 

Symbols that occur more frequently are assigned a fewer number of bits 

while less probable symbols are assigned more bits. This has the overall 

effect of reducing the average data rate. 

Arithmetic coding has several advantages over other popular 

lossless techniques such as Huffman coding. Arithmetic coding is capable 

of providing near optimal performance since it does not require blocking 

of the data stream._ .Shannon's noiseless coding theorem implies that each 

data symbol can, in theory, be represented by a code length equal to its 

information content, which is defined as a logarithmic function of the 

symbol probability. Huffman codes use blocking of the data stream which 
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means that each symbol must be mapped to an integral number of bits. 

That is, they operate on a symbol by symbol basis. Since, in general, the 

information content of a data symbol is non-integral, Huffman codes 

suffer an inefficiency in bit allocations. In fact, Huffman codes can 

require in the worst case up to an extra bit for each symbol coded. 

Arithmetic coding, on the other hand, does not suffer from this 

inefficiency since no data blocking is necessary. This allows fractional bit 

allocations so each bit in the arithmetic code is fully utilized. 

Arithmetic coding is also easily adaptable to the statistics of the 

data source so coding can be accomplished without previous knowledge of 

source statistics. As long as the decoder can determine how the encoder 

arrived at the statistics, it can easily decode the message. Huffman 

codes, on the other hand, require that a new set of codes be generated 

every time the symbol probabilities change. This must be done at both 

the encoder and the decoder which is generally too time consuming for 

practical implementations. 

The use of arithmetic coding also allows the separation of coding 

and source modeling. Source modeling, as the name implies, attempts to 

model, in a statistical sense, the way in which an information source 

produces data. By appropriately modeling the source, the compression 

obtained by the arithmetic coder can be improved by reducing the 

uncertainty associated with the data. In effect, the goal of the model is 

to predict future data from past data. The better a model is at predicting 

the statistics of the source, the less uncertainty exists in its data. The 

achievable compression of any model is directly related to the degree of 

uncertainty associated with it, so better model predictions mean better 

compression performance. 

Since arithmetic coding performs near optimally, much of the 

performance improvement in lossless compression comes from the design 

of better source models. In general, the more information provided to a 

model, the better the model will perform. In effect, source modeling 
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removes redundancies due to correlations between source symbols. More 

information about how the information source operates allows the model 

to exploit more of the redundancy present in the data. 

The compression techniques implemented in this thesis involve a 

combination of both lossless and lossy compression methods. Chapter 2 is 

concerned with the discussion of the concepts behind vector quantization, 

including the advantages, disadvantages, and popular alternatives to the 

standard technique. In Chapter 3, a brief introduction to the ideas 

behind lossless coding is presented along with a discussion of the 

arithmetic coding technique. In Chapter 4, a discussion of basic source 

modeling concepts for use with the arithmetic coder is presented. 

Chapter 5 describes the overall compression approach as applied to the 

compression of digital images. Chapter 6 provides the results obtained by 

implementing the techniques described in Chapter 5. A comparison of 

the results to other methods is also provided. Finally, Chapter 7 

summarizes the conclusions and proposes possible directions for future 

work in this area. 
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CHAPTER 2. VECTOR QUANTIZATION 

It is a well known fact that in most real world signals there is a 

large degree of correlation between adjacent samples. Coding systems 

that can exploit these correlations will in general provide good 

compression performance. Standard scalar quantization does not take 

advantage of such correlations since each sample is coded independently. 

Scalar coding techniques that employ memory, such as differential pulse 

code modulation (DPCM), are able to exploit these correlations to a 

degree. Vector quantizers are capable of exploiting these inter-sample 

correlations to a greater degree by coding groups of samples 

simul taneously. 

The basic encoding and decoding structures for vector quantization 

(VQ) are shown in Figure 2.1. In VQ, a group of k samples from a signal 

is considered as a single block or vector, X, which is compared to a 

collection of N specially designed template vectors called a codebook. The 

individual vectors in the codebook are generally referred to as codewords 

or codevectors and each codevector is identified by a unique label or 

index. A comparison of the signal vector to each of the codevectors is 

performed with respect to a specified distance measure, usually the 

average squared error, and the signal vector is quantized to the 

codevector that is closest to it. This particular codevector is commonly 

referred to as the nearest neighbor of the signal vector. The label that 

corresponds to this codevector is then transmitted or stored depending on 

the application. The decoder can then read the index and perform a table 

look-up using the same codebook to determine the quantized output. 

Thus, the encoder maps a k dimensional input vector onto one of N 

possible indices and the decoder maps this index back to a k dimensional 

approximation to the input vector. 

In order to illustrate how VQ can exploit the statistical 

dependencies within a block of samples, a comparison of how the vector 

space is partitioned for scalar and vector quantization is considered. 
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Figure 2.1 Basic encoding and decoding structure for VQ 

Examples of possible two dimensional vector space partitions for scalar 

and vector quantization are shown in Figure 2.2, where Xl and X2 

represent the components of the two dimensional vector. The dot within 

each region represents the quantization point for that partition. In the 
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Figure 2.2 Two dimensional vector space partitions for 
scalar and vector quantization 

case of scalar quantization, the samples Xl and X2 are quantized 

independently but are being observed together in order to make a 

comparison with the VQ vector space. In this case, it is apparent that 

the scalar quantizer partitions the vector space in a very structured way. 

The quantization of Xl is completely independent of the value of X2 and 

vice versa so statistical dependencies between Xl and X2 cannot be 

exploited. 
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The vector quantizer, on the other hand, has more freedom to 

choose partition shapes and sizes, so that dependencies between samples 

can be exploited [1]. In the VQ vector space partition, shown in Figure 

2.2, the quantization levels of Xl and X2 are now inter-related. This can 

be shown by holding the value of Xl fixed while varying X2. Partition 

regions that are intersected while X2 is varied from one end of the vector 

space to the other represent possible quantization points for the two 

dimensional vector. It is then easy to see that the quantized value of Xl 

will change for different values of X2. 

Even if the samples within a vector are linearly independent, VQ 

can perform better than scalar quantization since it has the freedom to 

choose partition shapes that will more efficiently span the vector space. 

For example, VQ could partition the vector space with a hexagonal lattice 

structure as shown in Figure 2.3. This structure would reduce the 

distortion for the same number of partitions since the worst case 

distortion for each cell has been reduced. 

In addition to the freedom to choose better partition shapes, VQ 

has the freedom to choose vectors that minimize the quantization error 

over the entire block of samples. That is, VQ will allow larger 

distortions for some vector components in exchange for less overall 

Xl 

XI 

Figure 2.3 Vector space partition for hexagonal lattice 
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distortion in the vector. This is in contrast to scalar quantization where 

the distortion is minimized for each individual sample. This can lead to 

better subjective quality since distortions in individual samples may not 

be as perceptually important as the overall distortion of the vector. For 

example, in image coding, isolated pixels with larger distortions will 

generally not be objectionable to the eye. Similarly, in speech and audio 

coding, isolated samples with larger distortions will generally be 

inaudible. 

Design 

The design of a VQ coding system involves an iterative process of 

optimizing the encoder for a fixed decoder and optimizing the decoder for 

a fixed encoder. Given a set of training vectors, it is desired to find a set 

of codevectors that minimizes the distortion over the entire training set. 

For a fixed decoder or codebook, the encoder that minimizes the average 

distortion is simply a nearest neighbor encoder. In other words, the 

encoder maps the input vector, X, to the index i if and only if 

d(X,C;) ~ d(X,Cj ) for all j 

where d(X,C;) is the distance between X and the ith codevector, Ci. For a 

fixed encoder mapping, the codebook that minimizes the average 

distortion over the training set contains codevectors that are the centriods 

of each partition. For example, let Ri be the set of all training vectors 

that are mapped by the encoder to index i. The codevector that 

minimizes the average distortion for this partition is simply the centroid 

of Ri. For the average squared error distance measure given by 

Equation 2.1 

the centroid is simply the statistical average of all the vectors belonging 

to Ri. 

This process leads to the well known iterative improvement 

algorithm known as the LBG or k-means algorithm shown in Figure 2.4. 
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LBG Algorithm 

1. Choose an initial codebook. 
2. Optimize Encoder: 

Classify training data using the 
current codebook and the nearest 
neighbor decision rule. 

3. Optimize Decoder: 
For each class, find the centriod of 
all the training vectors belonging to 
the class and use this as the new 
codevector. 

4. Repeat 2 and 3 with the new 
codebook until convergence. 

Figure 2.4 LBG algorithm 

The first step in this algorithm is to choose an initial codebook, which is 

usually selected randomly from the training data. This codebook is then 

improved by first finding the optimal encoder for this codebook. This is 

simply a classification of the training data with respect to the nearest 

neighbor decision rule. This step is followed by the task of finding the 

optimal code book for the encoder classification. The optimal codevector 

representing each class is determined by simply finding the centroid of 

the training vectors belonging to that class. The optimal codebook is 

then the collection of all of these optimal codevectors. These two steps 

are then repeated with the new codebook. This process continues until 

the change in average distortion becomes sufficiently small. The 

algorithm is guaranteed to converge to a locally optimal solution, 

however, there is no guarantee that the solution will be globally optimal. 
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To ensure that a good codebook design IS obtained, the algorithm is 

generally run several times with different initial codebooks. 

Complexity 

The major drawback to the use of VQ is its computational and 

storage complexity. When an input vector is coded by a vector quantizer, 

it must be compared to each codevector in the codebook in order to find 

the nearest neighbor codevector. Obviously if the codebook size and the 

cost of these vector comparisons is large, the computation required to code 

each input vector may be too large for practical use. 

The most commonly used distortion measure in VQ is the squared 

error given by Equation 2.1, where X is the input vector, Cj is the jlh 

codevector in the codebook, and k is the vector dimension. In this case, k 

multiplications are performed for each codevector. For an exhaustive 

search of a codebook of size N, kN multiplications are required which 

results in N multiplications per input sample. 

For a codebook of size N, log2(N) bits are required to assign a 

unique index to each codevector. The data rate, r, in bits per sample can_ 

then be defined as 

log2(N) 
r = -='---'---'-

k 
Equation 2.2 

This equation can be rewritten to give the codebook size in terms of the 

data rate and vector dimension. That is, N = 2rk codevectors. This means 

that the computational complexity in multiplications per sample for a 

given data rate is 

Similarly, the storage complexity of VQ can be given as 

SC= kN= k2rk 

Equation 2.3 

since storage of N codevectors of k dimensions are required. The average 

number of multiplications can be reduced somewhat by realizing that 

once the summation in Equation 2.1 is larger than the minimum distance 
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seen so far, the remainder of the summation terms do not have to be 

calculated since the codevector cannot be the nearest neighbor. The 

worst case complexity, however, is still given by Equation 2.3. 

Since the main performance gain of VQ lies in its ability to exploit 

inter-block correlations, there is a motivation to increase the vector 

dimension in order to exploit longer term statistical dependencies. 

However, increasing the vector dimension for a given data rate leads to 

an exponential increase in the required codebook size. Table 2.1 

illustrates the computational and storage complexity for image VQ at a 

data rate of 0.5 bits/pixel. It is easy to see that for moderate sizes of 

Table 2.1 Storage and computational complexity for various 
block sizes in image VQ at 0.5 bpp 

Block Vector Storage Computation Coding Time 

Size Dimension Complexity Complexity for 512x512 
(mpp) at 30ns/mult 

(s) 

3x3 9 207' 23 0.181 

4x4 16 4096 256 2.013 

5x5 25 144825 5793 45.560 

6x6 36 9437184 262144 2061.584 

image blocks, the computational and storage complexities increase very 

rapidly. The last column in Table 2.1 illustrates the required coding time 

for an image of resolution 512x512 at 30 ns per multiplication. This is 

obviously on the optimistic side since many other operations are required 

to code the image, but it illustrates, in physical terms, how the 

computational complexity increases with vector dimension. For the case 
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of 6x6 blocks, the required coding time is nearly 35 minutes while the 

coding time for 5x5 blocks is less than a minute. 

Constrained Vector Quantization 

A number of techniques have been proposed to overcome the 

complexity barrier of VQ. These techniques generally impose some 

constraint on the vector quantizer to reduce the complexity in exchange 

for sub-optimal performance. A large reduction in complexity is generally 

obtainable with only a minimal reduction in performance. 

Tree Structured Vector Quantization 

In tree structured VQ [1], the search for an appropriate codevector 

is performed in several stages, as shown in Figure 2.5. In this case, a 

binary tree is shown, but in general any number of branches can be used. 

At each stage, a portion of the codebook is removed from consideration by 

comparing the input vector to a number of specially designed test vectors. 

The results of these comparisons with the test vectors determine which 

portion of the codebook is searched. For example, at the first stage, the 

input vector is compared to the test vectors T1 and T2, and the path is 

selected corresponding to the test vector that gives the smallest 

distortion. At the second stage, the input vector is compared to either 

TIl and TI2 or T2I and T22, depending on the branch taken at the first 

stage. Again, the path corresponding to the test vector yielding the 

smallest distortion is selected. This process is continued until the leaf 

nodes, which represent the actual codevectors, are reached. 

Although the tree structured VQ provides a reduction in the number 

of vector comparisons, the storage complexity is larger since the test 

vectors, as well as the original codebook must be stored. The 

computational complexity in multiplications per vector for a B branch 

tree structured search of a codebook of size N = B", where h is the tree 
height, is simply Blog8(N). The number of test vectors that need to be 

stored is B(B"-I -1)/ (B-1) so the total number of vectors that need to be 

stored for the tree structured VQ is N+(N-B)/(B-l). For a codebook of 
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Stage One Test Vectors 

Stage Two 

Stage Three 

Codebook 

Figure 2.5 Tree structured VQ 

size 1024, only 20 vector comparisons are required for a binary tree 

structure but the storage complexity has nearly doubled to 2046. If a 

four branch tree structure were used, the number of vector comparisons 

remains 20 while the storage complexity is 1364. 

Transform Vector Quantization 

In transform VQ [1-3], the comparison of the input vector to each 

codevector is performed in the transform domain. Each input vector is 

transformed using a linear transform with energy compaction properties, 

such as the discrete cosine transform (DCT). Since most of the energy in 

the transform domain is contained in relatively few coefficients, only the 

p most significant coefficients are compared, where p < k. Thus, 

transform VQ has the effect of reducing the vector dimension for 

comparison purposes. 

The computational complexity for transform VQ is given by 

Equation 2.3, with the substitution of p for k, plus the cost of the linear 

transform, usually about k multiplications per sample. Since the 
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transform is only performed once for each input vector, the cost of the 

transformation is usually small compared to the savings due to the 

reduction in vector dimension. Additionally, the simplicity of the decoder 

is maintained since the codevectors can be transformed back to the 

original domain prior to storage so no transformation is necessary at the 

decoder. Thus, the storage complexity for the encoder is pN while the 

storage complexity for the decoder is kN. 

Classified Vector Quantization 

Classified VQ [1][7] uses a code book switching technique to reduce 

the search complexity. The codebook in classified VQ consists of several 

smaller codebooks called sub-codebooks of which only one is searched for 

each input vector. The basic block diagram for classified VQ is shown in 

Figure 2.6. Features are extracted from each input vector and the vector 

is classified into one of M classes. Each class has a sub-codebook, Di' 

associated with it which is searched to find the appropriate codevector. If 

the cost of classification is low, a large reduction in search time can be 

realized since only a small portion of the entire codebook needs to be 

searched. For example, if a codebook size of 1024 is used with 16 equal 

x~---~ 

Classifier 

Vector 
Quantizer 

. 
I 

Codebook Selection 

Figure 2.6 Block diagram of classified VQ 
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sized classes, only 64 codevector comparisons are necessary. In general, 

however, the classes are not of equal size. 

Mean Removed and Gain-Shape Vector Quantization 

Mean removed VQ [1][2] can yield a substantial reduction in 

computation and storage by separately coding the vector mean and its 
mean removed residual vector. If the size of the mean codebook is N", 

and the size of the residual codebook is N" there are N,N", possible 

reproduction vectors. However, since the mean and residual codebooks 

are searched individually, the computational complexity is reduced. In 

general, the computation required to quantize the mean is negligible 

compared to the residual comparisons since the mean requires only a 

scalar comparison. Therefore, the computational complexity of the mean 

removed VQ is approximately the size of the residual codebook. If, for 

example, there are 32 possible mean values and 256 residual codevectors, 

there are 8192 possible reconstruction vectors. Computationally this 

requires 256 vector comparisons and at most 32 scalar comparisons. The 

resulting VQ is sub-optimal, however, since many of the 8192 

reproduction combinations will not be used. 

An approach that is similar to mean removed VQ is gain-shape VQ. 

In gain-shape VQ [1-3], the gain and residual (shape) vectors are 

separately coded. However, finding the optimal gain-shape combination 

is not as straightforward as the mean removed case. If the gain were 

removed and quantized independently, it is possible that a gain-shape 

combination that is not the nearest neighbor would be chosen. In order 

to find the nearest neighbor combination, the shape code vector that is 

maximally correlated to the input vector is selected as the residual 

codevector. The gain value that minimizes the distortion between the 

selected shape codevector and the input vector is then calculated and 

quantized using the gain codebook. This process can be shown to yield 

the nearest neighbor codevector [1]. 
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The mean removed VQ and the gain-shape VQ belong to a more 

general class of vector quantizer called product code VQ [1][2]. Product 

code techniques divide a large task into several smaller tasks in order to 

make them more manageable. In general, product code techniques will 

perform reasonably close to optimal provided that the components of the 

product code are statistically independent. If the components that are 

separated contain statistical dependencies, the possibility of exploiting 

these dependencies is lost when they are coded separately. Therefore, to 

maintain approximately the same performance level of unconstrained VQ, 

components of the product code decomposition should be statistically 

independent. 

Vector Quantization with Memory 

Since the vector sizes used in unconstrained VQ are limited by the 

computational complexity, there is usually a substantial amount of 

correlation remaining between adjacent vectors. It is this fact that has 

inspired the use of vectOr quantizers with memory. This type of vector 

quantizer is capable of improving the performance for a given codebook 

size by exploiting the statistical dependencies between adjacent blocks. 

Predictive Vector Quantization 

The most straightforward way of implementing memory into the 

vector quantizer is to use a vector technique that is a generalization of 

the scalar DPCM technique called predictive VQ [1-3]. In the case of 

predictive VQ, an estimate of the current input vector is created using 

reconstructions of previous vectors. An error vector is then formed by 

finding the difference between the current input vector and the estimated 

vector. This error vector is then coded using a codebook of vector errors. 

In cases where there is significant correlation between adjacent 

vector components a large gain in performance over unconstrained VQ 

can be achieved for a given bit rate and complexity. Unlike 

unconstrained VQ, however, increasing the block size in predictive VQ 

does not imply an increase in performance. The reason for this is that 



www.manaraa.com

19 

using larger block sizes has a tendency to reduce the amount of 

correlation between adjacent blocks. This reduction in inter-block 

correlation has the effect of making accurate vector predictions more 

difficult to obtain. Thus, as the vector dimension is increased, the 

performance of predictive VQ should be expected to approach the 

performance for the unconstrained VQ for the same data rate. 

Finite State Vector Quantization 

Finite state VQ [1][4][5] employs memory into the coding process 

by using a feedback loop. In finite state VQ, the behavior of the system 

at any given instant of time can be described by the current output and 

the state of the system. The state of the system represents a summary of 

the past operations by the system and is used to determine which state 

codebook to use with the vector quantizer. 

The basic encoding structure of a finite state vector quantizer is 

shown in Figure 2.7. Finite state VQ, as the name implies, consists of 

only a finite number, K, of possible states the system can occupy. After 

each output is emitted from the vector quantizer, the next state 8 n+1 is 

calculated from the current output index, i, and the current state of the 

system, 8 m by the next state function. This new state determines which 

of the K codebooks will be used to code the next vector. Thus, the finite 

state VQ attempts to predict a good codebook for the current vector based 

on information from past vectors. The decoder is capable of predicting 

the same codebook since the state and the current symbol are known. 

Thus, the next state can be calculated using the same next state function. 

Note that finite state VQ is similar to the switched codebook structure of 

classified VQ. The difference here is that the finite state VQ uses the 

classification of the past vectors to determine the current codebook. 

Address Vector Quantization 

Address VQ [1][6] is another approach that attempts to exploit 

correlations between adjacent vectors. In address VQ, however, the 

vectors are initially coded with a memoryless vector quantizer and a type 
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Figure 2.7 Block diagram of finite state VQ encoder 

of lossless compression is applied to the resulting indices. The codebook 

in address VQ is divided into two sections: the VQ codebook and the 

address codebook. This codebook structure is shown in Figure 2.8. Each 

entry in the address codebook section consists of a sequence of indices 

corresponding to locations in the VQ codebook. Each input vector is first 

coded using the VQ codebook. After a specified number of blocks have 

been coded, the address code book is searched for an entry that matches 

the given sequence of indices. If a match is found, the index 

corresponding to the matching entry is used to code the group of vectors, 

otherwise, the index of each individual vector is used. Thus, address VQ 

is essentially a variable rate coding scheme where more bits are assigned 

to groups of blocks that are not contained in the address codebook. 

One of the drawbacks to the address VQ technique is that the 

address codebook must be quite large to obtain significant compression 

improvement. This results in a storage and search complexity problem. 

In [6], address VQ was used to code images using 4x4 blocks of pixels for 
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Figure 2.8 Codebook organization for address VQ 

the VQ coder while the address codebook was populated with VQ indices 

from groups of four neighboring blocks. Good compression performance 

was obtained from this technique since more than 70% of the blocks were 

coded using the address codebook. However, the address code book 

consisted of about 100,000 different index combinations. In order to 

prevent the need to search the entire address codebook and the need to 

assign unique indices to each address entry, the address codebook was 

divided into an active and inactive region of which only the active region 

was addressable. This is shown in Figure 2.8. The address codebook was 

then reordered based on pre-computed probabilities to keep the most 
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probable address combinations in the active region. The need to store the 

100,000 address combinations and the need to reorder the code book after 

coding each group of four blocks makes the complexity prohibitive. The 

decoder complexity has also increased since it must also store and reorder 

the large number of address entries. 
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CHAPTER 3. ARITHMETIC CODING 

Many of the binary codes used to represent data on digital 

computers arise naturally as fixed length codes. That is, each symbol in 

the code is represented by the same number of bits. For example, text 

characters are commonly represented on computers by standard eight bit 

ASCII codes. Similarly, quantization levels for digital audio are 

generally represented as fixed sixteen bit codes. The use of fixed length 

codes allows easy manipulation and processing of digital data. However, 

when efficient storage or transmission of data is necessary, fixed length 

codes are usually not the most efficient way to represent the data. Fixed 

length codes are efficient only when each symbol in the code has an 

equally probable chance of occurring. However, if the code symbols do 

not occur with equal probabilities, it is reasonable to expect that the 

average data rate could be reduced by assigning smaller length codes to 

symbols that occur more often and longer codes to less frequent symbols. 

This is the underlying concept behind lossless coding. In order to lay the 

ground work for a discussion of lossless coding, a brief discussion of some 

important concepts from information theory is provided. 

Information 

Information can be defined as the degree of surprise communicated 

by a message. Messages that produce a great deal of surprise contain a 

large amount of information and conversely, messages that are not 

surprising contain very little information. For example, the message "it 

is snowing in Iowa" contains very little information if it is received in 

January since it snows quite often in Iowa in January. However, if the 

message is received in April, it contains a relatively large amount of 

information since it rarely snows in Iowa in April. Thus, information 

conveyed by a message is related to the probability that the message 

occurred. Highly probable messages contain less information content 

than low probability messages. 
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In a mathematical sense, the information, in bits, conveyed by the 

symbol z is defined as 

fez) = -log2(P(z» Equation 3.1 

where P{z) is the probability of the event z [8]. Thus, events that always 

occur yield zero bits of information while events that never occur yield 

infinite information content. The average information, or entropy, 

conveyed by an information source, Q, with U possible symbols {ZI, Z2' 

...... , zu} is defined as 
u 

H(Q) = -I P(z,.) log2 (P(z,.) bits/symbol Equation 3.2 
;=1 

The entropy can be viewed as a measure of the uncertainty associated 

with an information source. According to Shannon's noiseless coding 

theorem, the entropy of an information source represents the theoretical 

minimum average codeword length achievable per source symbol. For 

example, a four symbol source {a,b,c,d} with probabilities of 0.1, 0.3, 0.4 

and 0.2 respectively has an entropy of 1.846 bits/symbol which represents 

the smallest average codeword length for this source. This theoretical 

compression bound is obtainable if each symbol is coded with a codeword 

length equal to its information content. This leads to the interpretation 

of Equation 3.1 as the ideal codeword length for the source symbol z. 

Huffman Codes 

The most well known and widely used variable length coding 

technique is Huffman coding. When symbols from an information source 

are to be coded individually, Huffman coding yields the smallest possible 

code length. This is not to say, however, that Huffman codes are optimal. 

Huffman codes are only optimal when the symbol probabilities are 

integral powers of one half. This is due to the fact that Huffman codes 

require an integral number of bits for each symbol, where as the ideal 

length for each symbol, given by Equation 3.1, is only an integer when 
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the symbol probability is an integral power of one half. Huffman codes 

have an advantage over other variable length codes in that no codeword 

is a prefix to another codeword. This is useful when decoding a message 

since information about the length of each symbol is not needed. The 

data stream can be scanned until a valid codeword is identified. One of 

the drawbacks of Huffman coding is that new codebook must be 

generated whenever the source statistics change. 

To illustrate how a Huffman code is constructed, consider the 

example of a four symbol source alphabet, Z = {a,b,c,d}, with the symbol 

probabilities of 0.500, 0.250, 0.1250, 0.1250 respectively. To construct the 

code, the source is subjected to a series of alphabet reductions until only 

two symbols remain as shown in Figure 3.1. At each stage, the source 

alphabet is reduced by combining the two symbols with the lowest 

probabilities into a new symbol. For example, in the first alphabet 

a 0.5 ... a 0.5 ... a 0.5 

b 0.25 ... b 0.25 ~ 1]2 0.5 =r c 0.125 .. 1]] 0.25 
~ d 0.125 

Figure 3.1 Alphabet reductions for Huffman codes 

reduction, the two least probable symbols are "C" and "d" so they are 

grouped into a single new symbol, "T]/' with probability of 0.250. The 

second alphabet reduction combines liT]/, and lib" into a new source 

symbol, 1T]2" with a probability of 0.500. The process of alphabet 

reductions continues until only two source symbols remain. 

example, only two alphabet reductions are necessary. 

In this 
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To illustrate how the code alphabet IS constructed, the alphabet 

reductions are shown in Figure 3.2 in the form of a rooted binary tree. 

The terminal nodes in the tree are the four original source symbols, the 

next higher level represents the source alphabet after the first reduction 

and so on. Each branch in the tree is labeled with a bit value, ° or 1, as 

shown. To find the code symbol for each symbol in the source alphabet 

the tree is traversed starting at the root node until the desired terminal 

node is reached. The combination of branch labels encountered while 

traversing the tree represents the Huffman codeword for the given source 

symbol. For example, the terminal node corresponding to the source 

symbol "c" is reached by taking the branches 0,0, and 1 so the codeword 

for that symbol is "001". The choice of the branch labels at each stage is 

arbitrary so there are actually several possible Huffman codes for this 

source. 

1 01 001 000 

Figure 3.2 Construction of Huffman code 
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If the probability estimates for the example above are correct, the 

average number of bits/symbol is 

(0.500)*1 + (0.250)*2 + (0.125)*3 + (0.125)*3 = 1.750 bits/symbol 

The entropy for this example can be calculated from Equation 3.2 as 

1.750 bits/symbol. In this example, the Huffman code performs optimally 

since the symbol probabilities are integral powers of one half. In general, 

however, the performance of the Huffman code will be slightly sub­

optimal. 

Arithmetic Coding 

Arithmetic coding offers an attractive alternative to Huffman codes 

when adaptive compression or source modeling is desired. Unlike 

Huffman codes, arithmetic coding does not require blocking of the data 

stream so greater compression efficiency can be realized. In fact, 

arithmetic coding is capable of performing near the theoretical 

compression bound, even when the symbol probabilities are not powers of 

one half [9][10]. Arithmetic coding also handles varying statistics quite 

easily. 

In arithmetic coding, codewords can be viewed as real valued points 

on the interval [0,1). The goal of the arithmetic coder is to assign to the 

given message a point within this interval that uniquely distinguishes it 

from any other message. The interval [0,1) is distributed among the 

possible symbols according to their probabilities. Using the same source 

symbols and probabilities as the Huffman coding example, the interval 

[0,1) can be divided as shown in Figure 3.3. Thus, any point within the 

0.0 0.125 0.25 0.5 1.0 

I d I c I b I a I 

Figure 3.3 Interval division for arithmetic coding 
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interval [0.5,1.0) can be used to describe the symbol "a", any point within 

the interval [0.25,0.5) can be used to describe the symbol "b", and so on. 

As each source symbol in a given message is encoded, the corresponding 

sub-interval is distributed among the possible source symbols according to 

their probabilities. For example, Figure 3.4 illustrates how the interval 

[0,1) is divided as each symbol in the message "aacbd" is encoded. Since 

the first symbol in the message is "a", the sub-interval corresponding to 

"a" is divided among the source symbols for use in coding the second 

_1._00 __ -i~~ r--,~1.~oo~_---i~r--' 1.00 0.7%875 

a a a a a 

0.50 0.75 
0.875 0.792%875 

0.7%875 

b b b b b 

0.7890625 
0.791015625 

0.8125 

C C C C C 
0.78125 0.7900390625 

.78515625 

d d d d d 
0.78125 

0.7890625 

Figure 3.4 Example of arithmetic coding 
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symbol. Since the second symbol is again "a", its interval [0.75,1) is 

divided so that the third symbol can be coded. This process is continued 

until the entire message has been coded. For the message "aacbd", the 

final interval is [0.7890625,0.7900390625) which uniquely distinguishes 

the message from any other five symbol message. Any decimal value 

within this interval can be used to represent this message. When 

implementing the technique, it is convenient to choose the lower bound of 

the interval as the code value. 

To decode the message from the given decimal representation, the 

decoder mimics the interval division performed by the encoder. In the 

previous coding example of Figure 3.4, the decoder can immediately 

determine that the first symbol is "a" since the coded point falls within 

this interval, [0.5,1). The interval division is then performed as it was at 

the encoder. Once again, the decoder can determine that the second 

symbol is "a" since the coded point lies within this sub-interval, [0.75,1). 

This is continued until the message is completely decoded. In order for 

the message to be properly decoded, however, the length of the message 

must be known. For example, if the point 0.7890625 is used to code the 

message, the decoder cannot determine the exact message without 

knowledge of the message length. The messages "aacbd" , "aacbdd" and 

IJaacbdddIJ could all be represented by this same code value. In cases 

where the length of the source sequence is not known in advance, a 

special symbol is reserved as an end-of-message symbol. In the previous 

example, the source symbol "d" might be reserved as the special end-of­

message symbol. 

The arithmetic coding technique can be described formally through 

the use of recursive formulas. Let F be defined as a table containing the 

cumulative probabilities of the discrete source alphabet, Z, then the 

probability for the ith source symbol is P(z;) = F(i) - F(i-lJ. If X(a) is the 

start of the interval for source sequence a= {al ,a2, ... } and W(a) 

represents the width of the interval, the recursive formulas are given by 
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X(e) = 0 Wee) = 1 

X(a aj ) = X(a)+W(a)F(i) 

W(a aj ) = W(a)P(a j ) Equation 3.3 

where E is the initial empty sequence and aai is the concatenation of the 

previous source sequence, a, and the current source symbol, ai. 

One of the primary advantages of using arithmetic coding is that it 

can handle varying statistics very easily. The probability distribution at 

each stage in the coding process can be changed as desired. For example, 

if the statistics are to be gathered adaptively from the data being 

compressed, the probabilities presented to the coder can be updated after 

each symbol has been coded. The ability to alter the statistics at each 

stage is also useful when using conditional source models which will be 

discussed in Chapter 4. As long as the decoder is capable of reproducing 

the way the encoder produced the probabilities at each stage, the message 

will be decodable. 

Implementation Considerations 

Although the concepts behind arithmetic coding are relatively 

simple, implementation of the technique is a non-trivial task. A number 

of difficulties are encountered when implementing arithmetic coding with 

finite precision arithmetic. The most obvious problem is the possibility of 

underflow since the interval width is repeatedly multiplied by fractional 

probabilities. To prevent underflow from occurring, the interval is 

rescaled after each symbol is coded to allow sufficient resolution for any 

further interval divisions. 

Consider, for example, the coding example in Figure 3.4 with the 

cumulative probabilities replaced by their binary fraction equivalents. 

This is shown in Figure 3.5. Once the leading bits in the binary 

representation of the interval boundaries agree, no further division of the 

interval will change these bits. Every point between the two boundaries 

must start with this leading digit. Therefore, the bits that agree are no 

longer needed so they can be transmitted and the interval rescaled. In 
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.----. ------i~~ r---,·----i .. ~r___, 1.00000 0.11 01 0000 

a 
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0.1100 0.11100 
0.11001100 

b b b 

0.11001010 

0.11010 
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.11001000 

Figure 3.5 Example of arithmetic coding with 
binary interval representations 

0.11 0011 0000 

a 

0.1100101100 

b 

0.1100101010 

C 
0.1100101001 

d 
0.11 001 01 000 

other words, leading bits can be shifted out until the leading bits in the 

boundary representations no longer agree. For example, in Figure 3.5, no 

bits can be shifted out after the first two divisions since the leading bits 

in the interval boundaries, [0.100,1.000) and [0.1100,1.000), do not agree. 

In the third division, however, the interval becomes [0.11001,0.11010) so 

the first three digits, 110, can be shifted out and transmitted. The 

interval can then be rescaled to [0.01,0.10) without loss of information. 

Similarly, in the next division, the hits 01 can be shifted out and the 

interval rescaled to [0.01,0.10), and so on. 
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Although this rescaling worked well in this example, there is still 

no guarantee that an underflow condition will not occur. If, for example, 

a symbol with small probability is coded, the interval may become too 

small for further divisions even though the leading bits in the boundary 

representation do not agree. An example of such an interval could be 

[0.100000 ... ,0.011111 ... ). In this case, no leading bits agree and further 

divisions of the interval would definitely produce an underflow condition. 

To alleviate this problem, the interval width can be rescaled to a 

large enough value to prevent underflow. That is, the interval width can 

be rescaled so that there will be enough precision even if the symbol with 

the smallest probability occurs. To see how the precision can be 

guaranteed, the integer implementations of the cumulative probability 

table·, the start of the interval, and the interval width are considered. 
The symbol probabilities are implemented as a frequency count out of Km 

source symbols so that the cumulative probability table represents the 

accumulation of these probabilities. If F is the integer representation of 

F, then the probability of the ith source symbol is specified as zi occurring 
F(i) - F(i -1) times out of Km symbols. If X and W represent the integer 

implementations of X and W, the recursive formulas given in Equation 

3.3 can be written as 

X(t:) = 0 W(t:)=d ro 

X(a aj ) = (X(a)+l (W(a)FU-1)/ Km)+ ~ j)d s 

JV( a aJ = (l (W( a)F(i)/ Km)+ ~ j 
-l (JV(a)FU-l)/ Km)+ ~ j)d s 

Equation 3.4 

where L * J represents the greatest integer less than or equal to the 

argument. The parameter s is chosen such that 

dro ~ W(a aj ) < d ro
+

i 

where 00 is the number of d-ary digits used to represent the interval 
" width. This is equivalent to saying that W has 00+1 d-ary digits of 

precision. An important restriction on the cumulative probabilities IS 
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that F(i) * F(i -1), otherwise the interval width could become zero if the 

ith symbol occurs. In order to ensure that enough precision exists to 

represent further interval divisions, m must be chosen such that 
A A 

F(i) - F(i -1) d aJ ~ 1 for all i 
Km 

As previously mentioned, it is convenient to choose the lower 

bound of an interval to represent the coded point for the given message. 
Equation 3.4 shows that the calculation of X(a Q;) at each stage is 

accomplished by adding a term containing the interval width to the value 
of X(a) and scaling by dS. The term added to X(a) is the interval width 

scaled by the factor FC; -1) / Km which represents the cumulative 

probability of the symbol Q.-l' By definition, this scaling factor is less 

than 1.0 since F(i-l)<Km for all i, so that the term added to X(a) is at 
A 

most W(a). This means that the addition involves only the m+1 least 

significant digits of X(a) with the exception of a possible carryover. If 

X is represented by m+ 1 d-ary digits, another register V of size L can be 

used as shown in Figure 3.6 to store the digits shifted out of X in the 

event that a carryover occurs. It is possible, however, that the carry out 

of X may propagate all the way to the beginning of the coded message so 

a large buffer register may be required. This carryover problem 

represents another difficulty in the implementation of arithmetic coding. 

" W 

Width Register 

" " V X 

Buffer Register Code Register 

Figure 3.6 Registers for implementation of arithmetic coding 
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One method for overcoming the need for a large storage buffer uses 

a run-length representation of the buffer [11]. Consider, for example, the 

buffer register shown in Figure 3.7a. In this case, the two left-most bits 

in the register are protected from a carry out of X because of the zero in 

bit five of the register which would terminate the carry propagation. 

Therefore, these bits can be transmitted since they cannot be altered by a 

carryover. The remaining bits in the register consist of a zero followed 

by a series of ones which can be represented by a run counter, R. In this 

case, the run counter would contain the value of five. If a carry out of X 
occurs, the first six bits in the register would be complemented as shown 

in Figure 3.7b. In the run-length representation, the carry-bit is 

transmitted followed by a series of R-l zeros. The last zero is retained 

since it might still be affected by a future carry. If no carry occurs the 

Unaffected 
h byCarry 

v 10111011111111111 
76543210 

~ I I 
Carry Trap Run of Ones 

R 

a) Original buffer register 

Complemented by Carry 
I I 

v 1 0\11 110\0\0\ 0\0\ 
76543210 
I I 

Transmitted 

b) Buffer after carryover 

Figure 3.7 Example of run-length buffer representation 
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bits shifted into the buffer by the rescaling may affect the run counter. 

If a one is shifted into the buffer, the run counter is simply incremented 

and if a zero is shifted into the buffer by the rescaling process all of the 

bits to the left of the new zero are protected from future carries so they 

can be transmitted. For the run-length representation, a zero is 

transmitted followed by R ones. 

Another approach to controlling the carryover problem is the use 

of a technique called bit-stuffing [9]. In this approach, if the buffer 

becomes filled with ones, a zero is inserted into the buffer and the series 

of ones is transmitted. The inserted zero serves the purpose of 

terminating any carry that may affect the series of ones. When the 

decoder detects this series of ones, the following bit is checked to see if a 

carry occurred. If the bit is a one, a carry occurred and the decoder 

continues the propagation of the carry. 

The advantage of using the bit-stuffing approach is that the 

encoder does not have to wait for the carry to propagate before 

transmitting a long series of ones. However, this technique requires an 

extra bit to be inserted into the data stream whenever a specified number 

of ones are encountered. Also, the carry must still be propagated at the 

decoder side. 
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CHAPTER 4. SOURCE MODELING 

In Chapter 3, the arithmetic coding technique was discussed which 

performs very near the theoretical entropy compression bound established 

by Shannon. This, however, does not mean that the compression 

performance of arithmetic coding cannot be improved upon. If the 

entropy of the information source can be reduced somehow, the 

compression bound would be lowered and the compression performance of 

the arithmetic coder could be improved. This process of entropy reduction 

is exactly what a good source model provides. Source modeling attempts 

to model, in a statistical sense, the way in which the information source 

generates its output. Models that are better able to predict the statistical 

behavior of the source reduce the uncertainty, and therefore the entropy, 

associated with the source. 

In order to demonstrate the effects of source modeling, consider a 

simple example from English text. The most straightforward way of 

modeling English text would be to assign unconditional probabilities to 

each of the possible letters in the alphabet. For example, the letter "u" 

might be estimated to occur 8% of the time in all English text. This 

model, however, does not make use of the fact that certain sequences of 

symbols may be more probable than others. For example, the sequence of 

letters "qa" is very unlikely to occur while the sequence "qu" is much 

more probable. Therefore, an alternate model might be to assign 

probabilities based on previous letters. For example, if the letter "q" had 

occurred, it would be reasonable to estimate from knowledge of the 

English language that there is a 98% chance that the next letter will be 

"u". For the source sequence "qu" , the first model assigns 3.64 bits of 

information to the letter "u" while the second model assigns only 0.029 

bits of information. The second model has reduced the uncertainty by 

effectively predicting the behavior of the source from the previous symbol 

"q". 
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The goal of a good model is to accurately predict the probability 

distribution of the source prior to coding each symbol. The model's 

predictions are considered correct if the actual statistics agree well with 

the predicted statistics. In general, the more information that is made 

available to the model, the better the predictions will be. Therefore, 

more sophisticated models will provide better compression results. In 

practice, however, a model's degree of sophistication is limited by its 

complexity. 

Most models use information from past symbols to make a 

prediction of the statistics for the next event from the source. In this 

way, the source model is able to exploit statistical dependencies between 

the previous symbols and the next symbol emitted by the source. The 

information is provided to the model in the form of conditional 

probabilities. That is, the symbol probabilities provided to the coder are 

conditioned on past events. These conditioning events are sometimes 

referred to as contexts. 

Markov Source Models 

The most common type of source model is a Markov source model. 

A Markov model [12-14] consists of a finite number of states in which the 

model can occupy at a given time, along with a set of paths representing 

the transition from one state to another. Each of the transition paths in 

the Markov model has a weight associated with it corresponding to the 

probability of leaving one state via that path. In terms of source 

modeling, the states represent the conditioning events or contexts and the 

transition path probabilities correspond to the probability of each symbol 

occurring with that context. Thus, each context is required to estimate 

probabilities for each possible symbol in the source alphabet. 

Memoryless Model 

A memoryless model is Markov model that consists of only a single 

state or context called a null context. This model is sometimes referred 

to as a zeroth order Markov model. In a memoryless source model, each 
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of the symbols emitted by a given information source is assumed to be 

statistically independent of all the other symbols in the sequence. For 

example, if the sequence u = {a1,a2 ••••••• ,au} is emitted by an information 

source with a V symbol alphabet Z = {Zl.z2 • ... • zv}, a memoryless model 

assumes that P( ai1ai_l>ai_2. . .. ) = P( ai) for all i. An example of a zeroth 
order Markov model for a four (V=4) symbol source alphabet Z = {a,b,c,d} 

is given in Figure 4.1. The circle is used to represent the state of the 

model and the symbol q> is used to represent the null context. Since 

there is only one context in this model, only the absolute probability of 

each symbol is stored so the storage complexity is simply V. The 

memoryless model was used when discussing arithmetic coding in the last 

chapter and was also used as the first model in the English text example. 

The ideal code length for the source sequence u using the 

memoryless model is given by its information content 
u 

I( a) = -log2[P( a)] = - L log2[P(ai )] 

v 

= - IU(zJlog 2[P(zJl 
i=l 

v 
= -ULP(Zi) 10g2[P(z,)] 

i=l 

where U(zi) = UP(zi) represents the number of times the source symbol zi 

occurs in the sequence u. The entropy of the message is defined as the 

average information content per message symbol so the entropy for the 

memoryless model is 

where !lo is used to indicate the zeroth order model. The entropy. H(!lo), 

represents the minimum average codeword length obtainable using the 

memoryless model. 
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Figure 4.1 Zeroth order Markov model 

First Order Model 

In a first order source model, each symbol in the source sequence is 

assumed to be dependent on the previous symbol in the sequence. That 

is P(ai1ai-l,ai-2,ai-3, ... ) = P(ai1ai-l) for all i. An example of a first order 

Markov model is given in Figure 4.2 for a four symbol source alphabet. 

This model will generally perform better than a memoryless model since 

statistical dependencies between symbols can be exploited. If there are V 

possible symbols in the source alphabet, then there are V possible first 

order conditioning events. Therefore, the storage complexity for the first 

order model is V 2
• 

The ideal code length for the source sequence a using the first 

order Markov model is also determined by its information content 
u 

I(a) = -log2[P(a)] = - L log2[P(a;la,_I )] 

1=1 
v v 

= - LLU(z;,Zj )logJP(z;lz)] 
j=1 ;=1 
v v 

= - LLU(Zj )P(z;lzj )log2[P(z;lzj )] 
)=1 ;=1 

v v 
= -u:L:LP(Zj )P(z;lzj )log2[P(z;lz))] 

j=1 ;=1 
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P(b I a) 

Pea I b) 

P(a I c) P(d Ib) 

P(d I c) 

P(c I d) 

Figure 4.2 First order Markov model 

where U(ZbZj) is the number of times the two symbol subsequence, ZiZj, 

occurs in a. The summation requires knowledge of the symbol ao which 

is not part of the source sequence. Different choices for ao will give 

different values for the ideal code length, however, its effect will be small 

for long sequences. The first order entropy is simply the average code 

length per message symbol. That is, 

/(a) r v 
H(QI) =-= - LP(z)LP(z;lzj )}Og2[P(z;lzj )] 

U j=1 1=1 

where QI is used to represent the first order model. As with the 

memoryless model, H(QI) represents the compression bound for the first 

order model. 

Higher Order Models 

Higher order Markov models are capable of exploiting more of the 

statistical dependencies that may exist between source symbols, so they 

can generally offer better compression performance. However, the 

number of contexts required becomes prohibitively large for higher order 

models. The number of contexts for a model of order q and a source 
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alphabet size of V is V q
• Since V probabilities must be estimated for 

each context, the overall storage complexity for the qth order model is 

V q
+

l
• Thus, for an alphabet size of V = 256, the storage complexity for a 

first order model is 65536, while the second order model has a complexity 

of 16,777,216. 

Generalized Condition Source Model 

The conditioning events that provide the best compression 

performance vary from application to application. For example, models 

for compressing text generally use neighboring characters as the 

conditioning events while speech models might find useful information in 

neighboring samples and samples at integral number of pitch periods 

away. To handle the different types of conditioning events, a generalized 

source model has been developed [14][15]. 

Consider a source with a V symbol source alphabet Z = {z],z2' ... 

,zv} and let a = {al' a2, ... , au} be a sequence of symbols emitted from 

the source. Let A = {J,,],A2, ... ,AK} be the set of all possible conditioning 

events and r = {gl,g2, ... ,gu} be the sequence of conditioning events for 

a such that gi is the context for compressing ai. The generalized 

condition source model assumes P(ai1ai-l,ai-2, ... ) = P(ailgi). The 

generalized model requires storage of V probabilities for each of the K 

contexts so the storage complexity of such a model is VK. 

The set of contexts A can be chosen to suit the particular 

application. For example, in the case of speech signals, the contexts can 

be chosen to incorporate information about neighboring samples as well 

as samples that are an integral number of pitch periods away. This 

generalized model can also be used to represent the Markov models 

discussed previously. For example, the context set A = {<p} yields the 

memoryless model. In this case, gi = <p for all i. Similarly, the first 

order model has the context set A = Z and gi = ai-l for all i. 
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The ideal code length and the entropy for the conditioned source 

model are determined in the same way as the first order model. In this 

case the ideal code length and the entropy are given by 
rr 

lea) = -logz[P(a)] = - L logz[P(ailgJ] 
i=1 

K V 

= -ULLP(Aj )P(ziIAj )logz[P(ziIA j)] 
J=1 1=1 

These equations reduce to the memoryless model when A = {q>} (K = 1) and 

to the first order model when A = Z (K= V). 

Probability Estimations 

Once a particular type of model is chosen, the probability 

distributions associated with that model must be estimated. A critical 

requirement for decodability of a message is that the encoder and decoder 

must have exactly the same probability distributions and context selection 

for each symbol that is coded. The most obvious way to meet this 

requirement is to maintain the same fixed symbol probabilities and 

contexts at both the encoder and decoder. This is often referred to as a 

static model. This method works well when the symbol probabilities for 

different source sequences are approximately the same. That is, when 

each message encoded by the model has approximately the same 

statistical structure. If, however, a message is encoded that does not 

closely match the statistics of the static model, the compression 

performance would be poor. In fact, the encoder may actually expand 

rather than compress the message. 

Another approach that may perform better is to actually scan the 

message before coding to gather the exact statistical distributions for the 

given message. This would ensure the best compression for the given 

type of model since the estimations of the symbol probabilities would be 

exact. This type of model can be referred to as a semi-adaptive model. 
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The problem with this approach is that the decoder cannot estimate the 

probabilities in the same manner as the encoder so this information must 

be communicated to the decoder via side-information. The need for side­

information will of course affect the overall compression performance. 

Also, the need to scan the entire message prior to encoding results in 

undesired coding latency. 

An approach that solves the difficulties of the static and semi­

adaptive models is known as the adaptive model. In this approach, the 

encoder and decoder both start with the same initial probability 

distributions and contexts. After each event is encoded, the encoder 

updates its probability distributions and contexts according to the symbols 

that have been encoded so far. At the decoder, the probability 

distributions and contexts can be updated in the same manner after each 

symbol is decoded. Thus, the encoder and decoder are able to adapt to 

the statistics of the given message in a synchronous fashion so there is 

no need for any side-information. Also, the coding latency is not a 

problem since the compression and the gathering of statistics can be 

accomplished in the same scan of the message. The disadvantage of this 

technique, however, is that the compression performance during the 

beginning of the message may be poor since the model is still learning 

the statistics at that time. 

A practical way to implement this technique with an arithmetic 

coder is to begin with probability distributions that are uniform. It is 

convenient to use integer frequency counts to represent the relative 

frequencies of the source symbols. That is, the probability of a given 

symbol is represented as occurring an integral number of times out of the 

total count. Initially, the symbols all have the same probabilities so the 

frequency counts are all set to one and the total count is set equal to the 

number of symbols in the source alphabet, V. When a source symbol 

occurs, the frequency count corresponding to that symbol and the total 

count are incremented by Ki. The factor Ki controls how quickly the 

model adapts to the statistics. Larger values of Ki will increase the speed 
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of adaptation, however, if this value is too large the model could have 

difficulty converging to the true statistics of the message. The value for 

Ki is generally determined experimentally. 
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CHAPTER 5. LOSSLESS INDEX COMPRESSION 

Chapters 2, 3, and 4 have provided the ground work for a 

discussion of the techniques used in this chapter. Unlike past chapters 

which were kept general, this chapter will be concerned with the specific 

task of compressing digitized images. Although the discussion here will 

be in terms of image coding, most of the techniques, with some 

appropriate modifications, are applicable to other signal compression 

situations. 

The underlying concept behind this technique is to use arithmetic 

coding with appropriate source models to compress the indices of VQ. In 

general, the indices due to the VQ are not uniformly distributed, so a 

reduction of the data rate is possible by entropy coding. Also, since the 

block sizes used in VQ are limited by complexity, the indices usually 

possess significant correlation between them. Therefore, appropriate 

source models can be used to reduce the entropy of the source resulting 

in further compression. 

Figure 5.1 shows a block diagram of the coding system used here. 

The original uncompressed signal is first quantized using a vector 

quantizer and the resulting indices are presented to the arithmetic coder 

and the source model. The source model uses the information about past 

inputs to make a statistical prediction of the current index. The 

arithmetic coder uses the predictions from the source model to compress 

the current index. 

Classified Vector Quantizer 

The first stage shown in Figure 5.1 is the vector quantizer. One of 

the more popular VQ techniques used for image coding is the classified 

VQ discussed in Chapter 2. It provides the necessary complexity 

reduction while allowing classes to be assigned to perceptually significant 

events. In image coding using VQ, it has been observed that much of the 
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Figure 5.1 Block diagram of coding structure 

reduction in subjective quality is due to edge degradation since 

perceptually, most of the information in an image is due to its edge 

content. In the classified VQ approach, a number of classes can be 

reserved for edges in an attempt to preserve the integrity of edges in an 

image. 

The classifier used here is very similar to the techniques described 

in [7]. Each 4x4 input block is classified as belonging to one of 31 classes 

based on the edge content of the block. Blocks that contain very little 

gradient content are classified as shade blocks. Blocks containing a 

moderate amount of gradient, but no definite edge content are classified 

as midrange blocks. Blocks that have no definite single edge, but contain 

a significant gradient content are classified as mixed blocks. The 

remaining 28 classes are assigned to different edge classes based on edge 

orientation, location and polarity. A summary of the different edge 

classes is shown in Figure 5.2. 

The classification of each block is performed with respect to a 

perceptual model of edges. In this model, it is assumed that the edge 



www.manaraa.com

47 

Horizontal 
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Figure 5.2 Edge classes for 4x4 blocks 

perception of the eye is proportional to normalized gradient and not the 

actual gradient level. The gradient between two adjacent pixels is 

normalized by the average intensity level of the two pixels. For example, 

the normalized gradient between pixel x(ij) and its east neighbor x(ij+ 1) 

IS 

d - 2[x(i,j)-x(i,j + 1)] 
h - x(i,j) + x(i,j + 1) 

Equation 5.1 
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Likewise, the normalized gradient between pixel xCij) and its south 

neighbor x(i+ 1 j) is 

d = 2[x(i,j)-x(i+ I,j)] 
v x(i,j) +x(i + I,j) 

Equation 5.2 

These normalized gradients are compared to two thresholds, T sand T e' to 
determine if the pixel transition is a shade, midrange or edge transition. 

The shade threshold, T s, is determined by the Weber fraction as 

T = {0.1 if dav < 30 or dav > 225 
s 0.025 otherwise 

where dav is the average intensity of the two pixels under consideration. 

The edge threshold, Te, was determined experimentally by [7], and is 

given by 

{

8.0 

~ = dav 

0.2 

if dllv < 30 

otherwise 

Six counters are kept to determine the number of edge and shade 

transitions made in the horizontal and vertical directions. For each 

transition location in a given block, the counters are incremented 

according to Figure 5.3. There are a total of 12 possible transition 

locations for each direction as shown in Figure 5.4. The 12 horizontal 
gradients are used to increment the counters Sh,Hp,Hn and the 12 vertical 

gradients are used to increment the counters Sv,Vp,v;,. Once each of the 

horizontal and vertical transitions has been checked, a classification 

decision based on the values of these counters is made as shown in 

Figure 5.5. 

In addition to the six transition counters, two tables, Gh, Gv, are 

used to keep track of gradient locations in the horizontal and vertical 

directions. These are 3x4 and 4x3 tables that correspond to the 

transition locations given in Figure 5.4. These tables represent edge 

enhanced versions of the input block and are used to determine the edge 
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Sh => Horizontal shade counter. 

Increment when Idhl > Ts 

Sv => Vertical shade counter. 

Increment when Idvl > Ts 

Hp => Positive horizontal gradient counter. 

Increment when dh > Te 

Hn => Negative horizontal gradient counter. 

Increment when dh < -Te 

V p => Positive vertical gradient counter. 

Increment when dv > T e 

Vn => Negative vertical gradient counter. 

Increment when dv < -Te 

Figure 5.3 Gradient counters for image classifier 
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Figure 5.4 Gradient locations for 4x4 blocks 
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Figure 5.5 Decision tree for image classifier 
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location. If the normalized gradient at a certain location is greater than 

an edge threshold Te, the corresponding location in the gradient table is 

set to +1. If this gradient is less than -Te' the location in the gradient 

table is set to -1. If the magnitude of the gradient is less than Te, then 

the location is set to zero. When the classifier decides that the input 

block is one of the 28 edge classes, the appropriate table is scanned to 

find the location of the edge. When determining the edge location for the 

horizontal class, the vertical gradient table, Gv, is scanned since vertical 

gradients imply horizontal edges. Similarly, the horizontal gradient table 

is searched for the vertical edge class. The edge location for the diagonal 

classes is determined by consulting both the horizontal and vertical 

gradient tables since a diagonal gradient can be decomposed into 

horizontal and vertical components. 

Once the classification of the training data is performed, a separate 

VQ codebook is designed for each class using the LBG algorithm 

discussed in Chapter 2 and the resulting codebooks are merged into one 

"super codebook". Due to the nature of the mixed class, it is very 

difficult to obtain a good representative codebook since, unlike the edge 

classes, no common characteristic is shared by all the training vectors. 

This class is essentially a miscellaneous classification. Instead of 

generating a separate codebook for the mixed class, it is grouped with the 

midrange class. This is due to the observation that most (:::::70%) of the 

blocks in an image correspond to a midrange classification while only a 

small portion (:::::5%) correspond to a mixed classification, so the overall 

effect of the mixed class will be small. Grouping the midrange and mixed 

classes results in a 30 class VQ. When coding an input block, only the 

sub-codebook corresponding to the classification is searched, while the 

decoding of the image is equivalent to the standard VQ table look-up 

procedure. 

Even though the use of the classifier reduces the complexity of the 

vector quantizer, the sub-codebook sizes required to adequately represent 

the training data are still large. In order to reduce the complexity 



www.manaraa.com

52 

further, the mean removed technique described in Chapter 2 was used in 

[7]. Although sub-optimal, this works well in image VQ since blocks 

with similar edge content may occur at various mean levels. A modified 

approach that does not require the separate coding of the mean is 

described in [6] and is used here. In this technique, the mean is 

predicted using pixels from neighboring blocks as shown in Figure 5.6. 

The predicted mean is then calculated as 

1 9 

Mp = 9t;m; 

This predicted mean is then removed prior to coding. The decoder 

predicts the mean using the same approach and adds it to the selected 

codevector. This approach, of course, does not result in a truly zero mean 

codebook since there will be some mean error that is compensated for by 

the codebook. 

Lossless Coding 

As discussed in Chapter 2, larger vector dimensions in VQ will 

allow the exploitation of longer term statistical dependencies resulting in 

Figure 5.6 Prediction of block mean from previous blocks 
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improved performance. Since small block sizes are generally used due to 

the complexity barrier of VQ, it is reasonable to expect that some 

correlation between neighboring blocks will still exist. This correlation 

presents itself as correlation between the indices of adjacent blocks. In 

Chapter 2, the technique of address VQ was discussed which exploits this 

correlation between indices, however, the storage and computational 

complexity was quite large. The technique proposed here separates the 

VQ and lossless compression stages resulting in a large reduction in 

complexity. 

All the models to be described gather their statistics adaptively 

from the image being compressed using the adaptive technique described 

in Chapter 3. This allows the compression of the indices to occur in a 

single scan. 

Memoryless Model 

Since the distribution of the indices is generally non-uniform, a 

memoryless model can be used to exploit the coding redundancy present. 

For most images, a large number of blocks will be classified as shade or 

midrange blocks, so the number of codebook indices corresponding to 

these classes will be relatively large compared to the edge classes. Even 

if another type of VQ were used, the indices will most likely favor certain 

codewords. This means that the uniform bit allocation of VQ can be 

improved upon by entropy coding the indices. 

First Order Model 

The memoryless model does not take advantage of any statistical 

dependency between adjacent blocks. A first order model, however, is 

capable of exploiting these correlations by using a previous index as a 

conditioning event. Figure 5.7 shows an example of a block, X, to be 

coded and its four causal neighbors that are candidates for conditioning 

events. Only causal neighbors are considered since it is usually desirable 

to compress the image in a single scan. If, for example, the north 

neighbor is chosen to be the conditioning event for the first order model, 
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Figure 5.7 Four causal neighbors of X 

the symbol probabilities presented to the arithmetic coder would be 

dependent only upon the index value of the north neighbor. 

Two Step Method 

One drawback of the first order model is that it is only capable of 

exploiting correlations in one direction. The correlations between the 

other three causal neighbors are completely ignored. One approach to 

this problem might be to use higher order models, such as a second, third 

or fourth order source model. However, the need to store every possible 

combination of conditioning event for such models means that the storage 

requirement becomes prohibitively large. For example, a modest size 

codebook of 256 requires a probability table for each of its (256)4 = 4.29 x 

109 possible conditioning events. Even if storage was not a problem, 

there would clearly not be enough data to create good probability 

estimations for each combination. 

The approach discussed here takes advantage of the structure of 

the classified VQ. The indices from the super-codebook are divided into a 

class component and a sub-codebook component and they are compressed 

separately. The reasoning here is that the classification of adjacent 

blocks should be more correlated than the codebook indices, so this 
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portion of the index should compress well. Figure 5.8 illustrates how the 

codebook index is divided into its class and sub-codebook components. In 

order to reduce the complexity of the model and to further enhance the 

compression of the classification, the distinction between different edge 

locations is ignored resulting in ten classes. 

Class 

Shade 

Midrange/Mixed 
tHorizontall 
tHorizontal2 

tHorizontal3 
-Horizontal 1 
-Horizontal 2 
-Horizontal 3 

+Verticall 
+Vertical2 

+ Vertical 3 
-Vertical 1 
-Vertical 2 
-Vertical 3 

+451 
+452 
+453 

VQ 
Index 

0-7 

8-39 

40-45 
52-57 

64-69 
46-51 
58-63 
70-75 

Classification 
Index 

- o Shade 
-1 Midrange 

J- 2 +Horizontal 

J- 3 -Horizontal 

76-81 ~ 
88-93 ~ - 4 + Vertical 
100-105 

82-87 3-
94-99 5 -Vertical 
106-111 
112-120 
130-138 
148-156 

+454 166-174 
-45 1 121-129 

} 6 ,45 degrees 

-452 139-147 
-453 
-454 

157-165 
175-183 

Sub-code book 
Index 

----- 0-7 
----.. 0-31 

----.. 0-17 

----.. 0-17 

----- 0-17 

----.. 0-17 

----_ .. 0-35 

----- 0-35 

+1351 
+1352 
+1353 
+1354 
-1351 

184-192 } 
202-210 
220-228 8 t 135 degrees ----- 0-35 

238-246 

-1352 
-1353 
-1354 

193-201 } 
211-219 9 13- d ---_.. 0-35 229-237 - :J egrees 

247-255 

Figure 5.8 Decomposition of classified VQ index 



www.manaraa.com

56 

The first two columns in Figure 5.8 represent the original VQ 

classification and the corresponding VQ indices for an example codebook 

size of 256. The first 8 codewords (0-7) in the super-codebook are shade 

vectors, the next 32 codevectors (8-39) are midrange codevectors, etc. The 

third column shows how the original 30 VQ classes map to the ten 

classes used for lossless compression purposes. For the purpose of lossless 

compression, the classification according to edge location is ignored. For 

example, all of the positive horizontal codevectors are grouped into a 

single new classification (2). This reduces the number of classes to ten 

which reduces the complexity of the model. The sub-codebook index is 

found by combining all of the codevectors belonging to the new 

classification and renumbering them consecutively starting at zero. For 

example, the 32 codevectors belonging to the midrange class (8-39) are 

renumbered from zero to 31. For the positive horizontal class, the 

codevectors (40-45), (52-57) and (64-69) are grouped together and 

renumbered from zero to 17. These new index numbers represent the 

sub-codebook indices. 

The first stage In the two step method is to compress the 

classification index of the block. To determine the context for the current 

block, a bit string is formed as shown in Figure 5.9. The bit 

representation of the classification indices of the north, west, northeast, 

and northwest neighbors are concatenated to form the context string. 

Since there are ten classes for the purpose of lossless compression, four 

bits are necessary to represent each index. To find the context for the 

current block, the context tree shown in Figure 5.9 is used. Starting at 

the root node, the tree is descended with the context string guiding the 

path at each node until a terminal node is reached. Each of the terminal 

nodes represents a possible context for the model. The context tree 

shown in the figure has seven contexts. 

The ordering of the context bit string determines which of the 

causal neighbors receives the most emphasis when searching for the 

context. For example, as the tree is traversed, the west neighbor is not 
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MSB MSB MSB MSB 

Bits From North 
Neighbor 

Bits From West Bits from Northeast Bits from Northwest 
Neighbor Neighbor Neighbor 

Context String 

A5 A6 

Contexts: {OO, 0100, 0101,011 0,0111 0, 0111 01, 1} 

Context Tree 

Figure 5.9 Context string and context tree for two step method 

considered as part of the context until after the classification of the north 

neighbor uniquely specified. Table 5.1 shows the conditions for choosing 

each of the seven contexts in Figure 5.9 where the symbol 0 represents a 

"don't care". The first context is chosen whenever the north neighbor is 

either shade (0), midrange 0) or a horizontal block (2 or 3) regardless of 

the classifications of the other neighbors. The sixth context is selected 



www.manaraa.com

58 

Table 5.1 Conditions for choosing contexts of Figure 5.9 

Contexts 

1 2 3 4 5 6 7 

North 0-3 4 5 6 7 7 8-9 

West 0 0 0 0 0-7 8-9 0 

Northeast 0 0 0 0 0 0 0 

Northwest 0 0 0 0 0 0 0 

whenever the north neighbor is a positive 45 degree block (7) and the 

west neighbor is either a positive or negative 135 degree block (8 or 9). 

For this context tree, the classifications of the northeast and northwest 

neighbors are never considered and the west neighbor is considered only 

if the classification of the north neighbor is 7. Experiments with the 

different causal neighbors showed that the north neighbor provided the 

best compression performance, followed by the west, northeast, and 

northwest neighbors respectively. 

The context tree is grown adaptively from the data to ensure that 

only the most probable contexts are used out of the large number of 

possible contexts. Figure 5.10 illustrates the process of growing the 

context tree. Initially, only a single root node exists which is called the 

null context. Once this context has been used a specified number of 

times, Kt, it is split into two contexts by converting it to an internal node 

and creating two children nodes. These two children now represent the 

newly created contexts and the number of contexts has increased by one. 

This process continues until the number of contexts reaches a 

predetermined limit, N c. For example, after the null context in Figure 
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Figure 5.10 Adaptive growth of context tree 

5.10 is used K t times, it is split into the contexts 0 and 1. Once the 

context 0 is used K t times, it is split into two contexts 00 and 01, and so 

on. The storage complexity for this part of the model is lONe since each 

context must store a probability estimation for each of the 10 classes. 

The second stage in the two step method is the compression of the 

sub-codebook index. This is done using a first order model, however, the 

selection of the context is performed with respect to the classification of 
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the neighboring blocks. To find the context for the sub-codebook index, 

the classifications of the neighboring blocks are consulted to determine if 

there is a match with the current class. If there is a match, the sub­

codebook index of the first matching neighbor of the north, west, 

northeast, and northwest is used as the context for the current sub­

codebook index. If no classification match occurs, a null context is used 

to compress the sub-codebook index. 

Three examples of this context selection process are shown in 

Figure 5.11. The VQ index for each block is given, as well as the 

decomposition of the index. The classification indices are shown as the 

left branch of the tree in each block and the sub-codebook indices are 

shown as the right branch. The root of the tree represents the actual VQ 

index. In the first example, the block to be compressed is a midrange 

block (1) with a sub-codebook index of 5. The context for compressing 

this sub-codebook index is found by checking the neighbors for a 

matching class. In this case, the first matching neighbor is the west 

.neighbor. The sub-codebook index of the west neighbor is 28 which is 

used as the context. In the second example, the first match is the 

northeast neighbor so its sub-codebook index, 6, is used as the context for 

compressing the index 22. In the third example, no match is found so a 

null context is used to compress the sub-codebook index 7. 

The complexity of this part of the model is given by 
9 

IN. (i)[N.(i) + 1] 
;=0 

where N. (i) is the number of sub-codebook indices for class i. This is due 

to the fact that N.(i) probabilities must be estimated for each of the 

N.(i) + 1 possible contexts in a given class. For the example codebook 

given in Figure 5.8, the storage complexity is 7824 for the sub-codebook 

index model. 
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Figure 5.11 Examples of context selection for sub-codebook index 
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CHAPTER 6. RESULTS 

This chapter presents the results obtained using the techniques 

discussed in Chapter 5. The images used in this experiment consisted of 

eight images from the USC database. These images have an intensity 

resolution of eight bits (256 gray values) and a spatial resolution 512x512 

pixels. A block size of 4x4 was used resulting in a 128x128 array of 

indices to be compressed without loss. Of the eight images, five were 

selected as training images resulting in 81,920 training vectors for the 

design of the vector quantizer. Codebooks of size 128 and 256 were 

designed resulting in VQ bit rates of 0.4375 and 0.5000 respectively. 

The classification statistics of the of training vectors are given in 

Table 6.1. It is apparent from this table that the vast majority of the 

vectors were classified as midrange or shade blocks. However, when 

designing the codebooks for the training data, it was observed that the 

number of codevectors necessary to sufficiently represent these classes 

was relatively low. For example, for the case of N=256, only 40 

code vectors were used even though over 80% of the training vectors 

belonged to these classes. Additionally, the average distortion of the 

vectors belonging to these classes was much lower than that of the edge 

classes. For example, the average squared error of the vectors in the 

shade class was about 6 to 10 and in the midrange class the error was 

around 60 to 90. On the other hand, the average squared error in the 

edge classes was usually in the 200 to 300 range. 

A separate sub-codebook was generated for each of the 30 classes 

and the resulting codebooks were merged into a super-codebook. Figure 

6.1 shows an example of a super-codebook designed for a codebook size of 

256. Numbering the blocks from left to right and top to bottom starting 

at zero gives the actual VQ index corresponding to each block. This can 

be compared to the VQ indices listed in Figure 5.8 to determine the 

classification for each of the blocks. The shade vectors appear to be very 

uniform as expected. The midrange blocks have some moderate gradient, 
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Table 6.1 Classification statistics for training data 

Classification Number of Vectors Percentage 

Shade 10367 12.66 

MidrangelMixed 56120 68.51 

+Horizontal 1 863 1.05 

-Horizontal 1 929 1.13 

+Horizontal 2 615 0.75 

-Horizontal 2 675 0.82 

+ Horizontal 3 634 0.77 

-Horizontal 3 580 0.71 

+Vertical1 1161 1.42 

-Vertical 1 1099 1.34 

+ Vertical 2 739 0.90 

-Vertical 2 743 0.91 

+ Vertical 3 677 0.83 

-Vertical 3 821 1.00 

+45 degrees 1 566 0.69 

-45 degrees 1 574 0.70 

+45 degrees 2 303 0.37 

-45 degrees 2 388 0.47 

+45 degrees 3 238 0.29 

-45 degrees 3 282 0.34 

+45 degrees 4 317 0.39 

-45 degrees 4 377 0.46 

+ 135 degrees 1 575 0.70 

-135 degrees 1 523 0.64 

+ 135 degrees 2 342 0.42 

-135 degrees 2 340 0.42 

+ 135 degrees 3 268 0.33 

-135 degrees 3 236 0.29 

+ 135 degrees 4 278 0.34 

-135 degrees 4 290 0.35 
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Figure 6.1 Example of classified codebook (N = 256) 

however, some of the blocks appear to have some moderate edge content. 

This may be the result of grouping the mixed blocks with the midrange 

blocks. The edge blocks show edges at appropriate locations and 

polarities with varying degrees of sharpness. Some of the diagonal 

blocks, however, appear to have more of vertical or horizontal character 

than diagonal. However, overall , the codebook represents the edge 

classes well. 
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The compression results for the two codebook sizes are summarized 

in Tables 6.2 and 6.3 for several images inside and outside the training 

set. The first row in each column represents the peak signal to noise 

ratio (PSNR) defined as 

PSNR= IOIOglO(LJ dB Equation 6.1 
MSE 

where P represents the peak gray value and MSE is the mean square 

error of the reconstructed image. For an eight bit intensity resolution, P 

is 255. The PSNR represents a measure of the quality of the 

reconstructed image. A PSNR of near 30 dB is generally considered to be 

of communications quality. The range of PSNR obtained here is typically 

28 to 31 dB for N=256 and 27 to 30 dB for N=128. The PSNR for the 

128 size codebook is generally about 1 dB less than that of the 256 size 

codebook. 

Figures 6.2 through 6.10 demonstrate the quality obtained for three 

of the images used in this experiment. Figures 6.2, 6.5 and 6.8 are the 

original images, Figures 6.3, 6.6 and 6.9 are the images coded at 0.5000 

bpp, and Figures 6.4, 6.7 and 6.10 are the images coded at 0.4375 bpp. 

Table 6.2 Compression results for N = 128 

Image Peak Vector Memoryless First Two Step 
SNR Quantization Order 
(dB) (bpp) CR (bpp) CR Cbpp) CR (bpp) CR 

Lena 28.9 0.4375 18.3 0.283 28.3 0.250 32.0 0.241 33.2 

Peppers 30.2 0.4375 18.3 0.256 31.3 0.233 34.3 0.221 36.2 

Couple 25.9 0.4375 18.3 0.311 25.7 0.298 26.8 0.281 28.5 

Sailboat 27.1 0.4375 18.3 0.327 24.5 0.315 25.4 0.299 26.8 

Tiffany 27.5 0.4375 18.3 0.273 29.3 0.253 31.6 0.243 32.9 

Woman 33.5 0.4375 18.3 0.223 35.9 0.189 42.3 0.177 45.2 
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Table 6.3 Compression results for N = 256 

Image Peak Vector Memoryless First Two Step 
SNR Quantization Order 
(dB) (bpp) CR (bpp) CR (bpp) CR (bpp) CR 

Lena 30.0 0.5000 16.0 0.344 23.3 0.312 25.6 0.297 26.9 

Peppers 31.3 0.5000 16.0 0.315 25.4 0.295 27.1 0.277 28.9 

Couple 26.9 0.5000 16.0 0.373 21.4 0.366 21.9 0.340 23.5 

Sailboat 28.1 0.5000 16.0 0.386 20.7 0.378 21.2 0.356 22.5 

Tiffany 28.4 0.5000 16.0 0.338 23.7 0.323 24.8 0.307 26.1 

Woman 35.1 0.5000 16.0 0.279 28.7 0.247 32.4 0.228 35.1 

Of these three images, two (Peppers and Lena) are from outside the 

training set and the other (Sailboat) is from inside the training set. 

When comparing the original images to the compressed images it can be 

seen that some moderate amount of degradation has occurred. The 

relatively smooth areas such as the middle portion of the peppers in 

Peppers, the facial and back regions of Lena and the water and sky 

regions of Sailboat were reconstructed well using vector quantization. 

Much of the perceived degradation in these images is in the edge regions 

despite the large number of code vectors reserved for edge preservation. 

This degradation is most noticeable along the edges of the peppers in 

Peppers, edges along the brim of the hat and the shoulder and hair in 

Lena, and the edges along the sail in Sailboat. At larger scales, some 

blocking distortion is apparent that is an artifact of the vector 

quantization process. There is very little perceptual difference between 

the reconstructed images for the 128 and 256 codebooks sizes. 

The remaining columns in Tables 6.2 and 6.3 are the bit rates and 

compression ratios for the various lossless techniques. The second and 

third column represent the nominal bit rate due to VQ and the 

corresponding compression ratio respectively. The bit rate for this case is 
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Figure 6.2 Sailboat -- Original image at 8 bpp 

determined by Equation 2.2 where N is 128 or 256 and k is 16. The bit 

rate can be converted to a compression ratio by CR = 8/(bit rate). For the 

cases where the lossless compression was used, the bit rate was 

determined by dividing the total number of bits by the total number of 

pixels to obtain an average bit rate. 

In general, the compression achieved by the lossless methods 

depends on the image being compressed. Most of the compression that is 
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Figure 6.3 Sailboat -- Coded at 0.5000 bpp 

obtained is due to the memoryless scheme. The memoryless scheme 

gathers its statistics adaptively as described in Chapter 4 using a value of 

Ki= 10. The improvement obtained over the nominal VQ bit rate ranges 

from 20 to 45 percent for N=256 and from 25 to 50 percent for N=128. 

This improvement is due to the non-uniform distribution of the VQ 

indices. The first order scheme gives an . improvement over the 

memoryless scheme by exploiting the correlations that exist between a 

block and its north neighbor. Again, the statistics were gathered 
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Figure 6.4 Sailboat -- Coded at 0.4375 bpp 

adaptively with Ki = 10. This scheme improves over the memoryless 

approach by 2 to 12 percent for N =256 and 4 to 15 percent for N = 128. In 

general, images that are relatively smooth seem to provide a larger 

performance improvement than more detailed images. The two step 

approach offers additional improvement over the memoryless approach by 

exploiting correlations in several of the causal neighbors. For this 

approach, values of Nc = 32, Kt = 8 and Ki = 8 were used to compress the 

classification information and Ki = 2 was used with the first order 
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Figure 6.5 Peppers -- Original image at 8 bpp 

over the memoryless scheme by 8 to compression of the sub-codebook 

indices. The two step approach improves 18 percent for N =256 and 9 to 

21 percent for N=128. 

In terms of physical storage size, the original uncompressed images 

each require 262,144 bytes of storage space since one byte is stored for 

each pixel location. The VQ process alone reduces the storage space to 

14336 bytes for a codebook size of 128 and 16384 bytes for a codebook size 
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Figure 6.6 Peppers -- Coded at 0.5000 bpp 

of 256. After compression using the two step method, the storage space is 

on average about 8000 bytes for the 128 vector codebook and about 9900 

bytes for the 256 size codebook. Overall, the original images have been 

compressed from 256 kbytes down to a mere 8 or 9 kbytes. 

The performance of the lossless methods described here is 

comparable to the performance of other VQ methods employing memory 

such as finite state VQ and address VQ. Although a direct relationship 



www.manaraa.com

72 

Figure 6.7 Peppers -- Coded at 0.4375 bpp 

between the finite state method and the methods presented here is 

difficult to find , the overall performance of the lossless methods is 

comparable. In [4], finite state methods were used with 5x5 blocks and a 

codebook size of 128 to compress "Lena" to 0.24 bpp with a PSNR of 27.5 

dB. This can be compared to the two step method where this image was 

compressed to the same bit rate with a PSNR of 28.9 dB. The image 

"Couple" was also compressed to 0.32 bpp at ~ PSNR of about 26 dB 

where the two step method provided a PSNR of 25.9 dB at a bit rate of 
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Figure 6.8 Lena -- Original image at 8 bpp 

0.281 bpp. The image "Lena" was also compressed in [5] with a PSNR of 

30 dB at a rate of 0.25 bpp. 

A better comparison of the performance of the lossless methods can 

be made with respect to address VQ [6]. This is due to the observation 

that address VQ is essentially a vector quantizer with lossless 

compression of neighboring indices. In address VQ, images were 

compressed using 4x4 blocks and a VQ codebook size of 128. The total 
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Figure 6.9 Lena -- Coded at 0.5000 bpp 

addressable codebook was of size 1024 and about 100,000 address 

combinations were maintained. A summary of the results for four of the 

USC images is given in Table 6.4. In their experiments, "Lena" and 

"Peppers" were outside the training set while the other two images were 

inside the training set. Comparing the results with those given in Table 

6.2 for the same images, it is apparent that the compression performance 

for images outside of the training set is better for the two step method 

presented here. Images inside of the training set, however, did not 
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Figure 6.10 Lena -- Coded at 0.4375 bpp 

compress as well as in the address VQ method. This is due to the fact 

that the address codebook and the probability tables used in address VQ 

are created from the training data. Thus, images inside of the training 

set will generally compress much better than images outside the training 

set. The variations in the PSNRs of these images are most likely due to 
the use of different training vectors or possibly modifications in the 

classification algorithm. 
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Table 6.4 Compression results for address VQ 

Image PSNR, dB Bit Rate, bEE CR 

Lena 30.6 0.256 31.3 

Peppers 29.8 0.260 30.8 

Sailboat 26.5 0.156 51.3 

Tiffan;y 31.9 0.156 51.3 

One of the advantages to the approach given here is that the 

design of the vector quantizer and the lossless coding system are 

completely independent. Thus, there is no need to redesign the lossless 

coding system every time a new VQ codebook is designed. Other VQ 

techniques using memory have the VQ and memory components inter­

related. For example, in finite state VQ the design and operation of the 

vector quantizer are modified to exploit statistical dependencies between 

neighboring blocks. In address VQ, the address portion of the codebook is 

dependent on the VQ codebook so if a new codebook is designed, the 

entire address codebook would have to be redesigned. Additionally, the 

probability tables used to reorder the address code book must be 

recalculated if new training data are used. 

Another advantage to separating the VQ and the lossless 

compression stages is that the storage and time complexity is small 

compared to methods such as address VQ. The storage complexities of 

the lossless methods presented here as well as the address VQ method 

are given in Table 6.5 for a codebook size of 128. The memoryless 

scheme offers a large compression performance for only a modest degree 

of storage space. Only the probability of each index needs to be stored in 

this case. In the first order approach, a slight compression improvement 

is obtained for a large increase in storage requirement. In this case, a 

separate probability table must be maintained for each index in the 

codebook. Thus, the storage complexity is the square of the codebook 
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Table 6.5 Storage complexity for lossless approaches 

Compression Method 

Memoryless 

First Order 

Two Step 

Address VQ 

Storage Complexity 

128 

16384 

2262 

165536 

size. The two step approach offers a larger degree of improvement over 

the memoryless approach than does the first order case, yet requires 

much less storage. A comparison with the address VQ in the last row of 

Table 6.5 highlights the complexity improvement obtained using any of 

the lossless approaches given here. Address VQ requires storage of 

100,000 address combinations as well as four probability tables, each of 

size 1282
• All of the values in Table 6.5 are concerned with only the 

lossless portion of the storage complexity. For a codebook size of 128, 

there are an additional 128*16 = 2048 storage locations needed to store 

the codebook. 
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CHAPTER 7. CONCLUSIONS 

The need for data compression has lead to the development of a 

number of promising techniques for both lossless and lossy compression. 

In Chapter 2, the technique of vector quantization was discussed as a 

promising approach to lossy signal compression. Very high compression 

factors can be obtained using VQ while maintaining good reproduction 

quality. VQ is able to achieve high compression performance by 

successfully exploiting the statistical dependencies known to exist 

between samples of most real world signals. This ability to exploit inter­

sample correlations comes from the fact that VQ has the freedom to 

choose the sizes and shapes of the vector space partitions to suit the 

statistical nature of the signals being compressed. Another advantage to 

using VQ is that the decoding is simply a table look-up procedure. This 

makes VQ useful for applications that require data to be decompressed 

many times but only compressed once. 

In general, the performance of VQ will improve as the vector 

dimension is increased. However, unconstrained VQ is severely limited 

by the computational complexity of even modest vector sizes. Due to this 

complexity barrier, a number of techniques have been developed that 

place some restriction on the vector quantizer in exchange for a reduction 

in the complexity. Many of these techniques substantially reduce the 

computational complexity while providing only slightly sub-optimal 

performance. 

Since VQ is limited to small block sizes, there is generally some 

statistical dependency that remains between adjacent VQ blocks. 

Methods that are commonly used to exploit these correlations involve 

introducing memory into the vector quantizer. These methods often 

provide greater compression efficiency but in some cases, such as address 

VQ, require substantial storage and computational complexity. 
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Another approach to removing redundancies that exist between 

adjacent VQ indices is to separately code the signal using VQ and a 

lossless coding scheme. In this thesis, the arithmetic coding technique 

was used with several different source models to exploit inter-block 

correlations in images coded by VQ. Arithmetic coding offers an efficient 

coding solution while easily allowing source modeling and adaptive 

statistic estimations. Arithmetic coding, on its own provides data 

reduction by exploiting the non-uniform symbol distributions that 

generally exist in VQ indices. When proper source models are used with 

arithmetic coding, further data reduction can be realized since 

correlations between adjacent blocks can be exploited. 

Experiments using the VQ and lossless techniques were performed 

using standard images from the USC database. Several different source 

models were used in the lossless stage. Much of the improvement in 

compression performance was due simply to the non-uniform distribution 

of the VQ indices. The first order model improved the compression 

performance to some extent but also increased the complexity 

substantially. The two step procedure offered even greater compression 

performance while requiring much less storage space than the first order 

approach. The first order method requires over seven times the storage 

space of the two step method for a codebook of size 128. The overall 

compression ranged from 20 to 35 times for a codebook size of 256 and 25 

to 45 times for the codebook size of 128. 

A comparison with address VQ shows that the compression 

obtained for images outside of the training set is better for the two step 

lossless scheme. Images inside the training set, however, did not 

compare as well. This is due to the fact that address VQ makes 

extensive use of the training data to calculate its statistics. Therefore, 

images that belong to the training data will, in general, compress very 

well using this approach. The lossless scheme, however, gathers its 

statistics adaptively from the image being compressed so no a prZOrl 

knowledge of the source statistics is necessary. This means that, in 
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general, images from outside the training set will compress as well as 

images inside the training set. 

A major advantage of using this technique over address VQ is the 

storage and time complexity improvement. In addition to the VQ 

codebook, address VQ requires storage of 100,000 address combinations. 

Additionally, four probability tables must be stored, each of size N 2
• On 

the other hand, the two step lossless scheme using the same size 

codebook requires storage of only 2262 probability estimations. In terms 

of time complexity, the address VQ must search a portion of the address 

codebook, calculate a new probability score for each address entry, and 

reorder the entire address code book after every four VQ blocks are coded. 

The two step method requires a relatively small amount of time to 
separate the class and sub-codebook indices, determine the contexts and 

code the block based on the supplied probabilities. 

In addition to the storage and time considerations, the two step 

approach is completely independent of the VQ design so that new 

codebooks can he generated without the need to redesign the lossless 

system. In address VQ, however, the design of the address codebook and 

the probability tables must be performed every time a new VQ codebook 

is created. 

Future Work 

There are a number of ways in which the methods discussed in this 

thesis can be improved upon for future work. Most of the improvements 

that are suggested here are concerned with the improvement of the image 

quality for a given bit rate. There are also some suggestions given to 

improve the compression performance for a given quality level. In 

general, however, both types of suggestions have the same overall effect 

since techniques that improve image quality can use reduced bit rates 

while maintaining the previous level of image quality. 

The area that promises the greatest potential for improvement is 

the classified vector quantizer. One of the difficulties with the classifier 
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used here is in the classification of the edges. The classification process 

described in Chapter 5 uses simple gradient counters to determine if an 

edge is present. If the edge counters reach a predetermined threshold, 

the block is classified as a specific edge type and the gradient table 

associated with that edge class is searched. When searching the gradient 

table, the number of gradients exceeding the threshold is counted for each 

row or column and the location yielding the largest count is selected. 

The problem here is that the counters used to determine the classification 

do not consider whether the gradients lie in the same row (or column). 
For example, a positive vertical edge will be detected if the Hp counter is 

greater than one. This, however, does not imply that these gradients will 

lie in the same column of the gradient table. Thus, a decision based 

solely on the counters does not guarantee proper classification of the 

edges. Vectors that have very little edge content may be classified as 

edges. A possible solution to this problem is to maintain a counter for 

each of the possible edge locations. These counters could then be used to 

detect when an edge occurs at a specific location. The use of separate 

counters for each edge location ensures that edge classification o,nly 

occurs for blocks with definite edge content. 

Another problem with the edge classification is that there appears 

to be some overlap between various edge classes. Many of the edge 

codevectors appear to have their edges spread over more than one 

location. These edges do not occur abruptly but are more gradual. Thus, 

some of the vectors in one location may appear very similar to vectors in 

an adjacent location. This implies that better performance could be 

obtained by removing the classification by location since the VQ would be 

less restricted in choosing codevectors. This would result in the same ten 

classes used by the two step lossless method. This would of course 

increase the computational complexity since each edge vector would have 

to be compared to more codevectors. However, the overall increase in 

computational complexity would be small since the percentage of edge 

blocks in an image is generally small. 
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The classification of the mixed class also presents a problem for the 

vector quantizer. Designing a separate code book for the mixed class is 

difficult since the vectors belonging to that class do not generally possess 

any common feature. Thus, a large number of vectors must be allocated 

to this class in order to obtain good reconstruction. The solution proposed 

in [7] and used in this research was to group the mixed class with the 

midrange class. The reason for this approach is that the percentage of 

image block classified as midrange is large and the effect of the mixed 

class would be small. However, when observing the codebook in Figure 

6.1, it is apparent that many of the midrange codevectors contain some 

degree of edge content. It is also apparent that some of the codevectors 

in the midrange class appear to be similar to horizontal, vertical and 

diagonal codevectors as well as mixed edge content. These edges are 

probably due to the influence of the mixed class. 

A possible solution to this problem would be to completely ignore 

the mixed classification for code book design purposes. This would allow 

the midrange class to be designed without the influence of the edges of 

the mixed class which will have the effect of reducing the number' of 

codevectors necessary to adequately represent this class. The vectors that 

are no longer used by the midrange class could then be distributed among 

the various edge classes resulting in better reconstruction of the edges. 

When coding vectors that belong to the mixed class, the entire codebook 

could be searched for the best matching codevector. This would allow the 

VQ encoder to find a relatively good match for the mixed blocks without 

the need for a separate codebook. Again, this approach would have the 

effect of increasing the computational complexity since an exhaustive 

search of the codebook would be required for mixed blocks. However, the 

number of blocks belonging to the mixed class is relatively small so the 

overall increase in coding time would be small. Also, the number of 

codevectors that must be searched for the midrange class is reduced 

resulting in a reduction of the computational complexity for that class. 
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This would most likely negate the computational increase due to the 

mixed class. 

Some improvements can also be made to the lossless coding part of 

the compression system. The ari thmetic coding technique provides 

performance near the theoretical compression bound so most of the gain 

in compression from the lossless coder will be due to improved source 

modeling. In general, the more information that is known about how the 

source creates its data, the better the compression will be. Thus, the 

compression could be improved by using more sophisticated source 

models. This, however, generally leads to the need for large amounts of 

storage and the need for larger data sets for good adaptation. Therefore, 

there is a need for more sophisticated source models that do not require a 

large amount of storage. There appears to be no obvious solution to this 

problem. The best approach would involve a trial and error design of 

various source models. The two step method presented here shows how 

the complexity of the model can be reduced while exploiting the 

redundancies between more neighbors. Only the most probable contexts 

are used in this case resulting in a large reduction in complexity while 

retaining some of the benefit of using a higher order model. Also, the 

decomposition of the VQ index into classification and sub-codebook 

components reduces the complexity of the model. Some modest 

improvement in performance may be obtained by trying different 

decompositions. 

Although there appears to be no obvious way to improve the 

lossless coding by directly modifying the source models, there may be a 

way of enhancing the performance of the lossless coder by altering the 

design of the vector quantizer. When experimenting with different 

codebooks, it was observed that certain codebook designs provided better 

compression results than others. This suggests that there may be a 

specific way to design the vector quantizer to enhance the performance of 

the lossless coder. One possible way that the VQ design can be modified 

is to select an initial codebook based on how the source model operates. 
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For example, choosing initial codevectors that somehow promote 

frequently occurring neighbor combinations. It may also be possible to 

modify the LBG algorithm so that it considers neighboring vectors during 

the design process. 
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APPENDIX 

This appendix contains the source listings for the programs used in 

this project. There are five programs written in C that perform the VQ 

design and coding. The programs have been written for use on a mM 
compatible PC but have been kept as general as possible to allow 

portability. The first program is the classification program which takes 

an input image and creates a file containing the classification for each 

block. The second program is the training set organization program that 

takes the input images listed in "trimage.fn" and sorts the blocks into 

appropriate training files. The third program is the codebook design 

program which reads the training files created by the previous program 

and designs a sub-codebook for a specified class. The fourth program 

merges all of the sub-codebooks created by the codebook design program 

into a single super-codebook. The fifth program is the VQ coding 

program which compresses the image into a file of VQ indices and creates 

a reconstructed version of the image. 

In addition to the VQ programs, there are four programs that 

implement the various lossless compression schemes as well as the Jcode 

subroutine, which is used by all four programs, that implements the 

arithmetic coding technique described in this thesis. These programs 

were originally written by Dr. T.V. Ramabadran and were adapted for 

use here. None of the lossless programs produce output files, rather they 

simply count the size of the output file. 

The VQ programs were written with respect to a specific directory 

structure. All of the executable files are in some root directory. All of 

the images are stored in a sub-directory "Img" with a ".img" extension for 

the original images and ".VQ" extension for reconstructed images. All of 

the classification files are stored in a "Classimg" sub-directory with a 

".xx" extension. All of the separated training files are stored in a 

"Trdata" sub-directory with a ".tr" extension. All of the codebooks are 

stored in the sub-directory "Codebook" with a ".cb" extension. The 
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codebook used for coding the image IS stored in the file "cbook.cb". 

Finally, the VQ index files are stored in a "Coded" sub-directory with a 

".idx" extension. 
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/************************************************************************ 

VQ CLASSIFICATION PROGRAM 

Written By: Mark Hetherington 
Date: August 31, 1993 

This program implements the classification algorithm described in the paper "Classified 
Vector Quantization of Images" by Bhaskar Ramamurthi and Allen Gersho IEEE 

Transactions on Communications, Nov. 1986 

Output File Fonnat: 

BINARY 

o 
1 
2 

3 to (2*BLKSIZE) 
(2*BLKSIZE+l) to (4*BLKSIZE-2) 
(4*BLKSIZE-I) to (8*BLKSIZE-IO) 

(8*BLKSIZE-9) to (12*BLKSIZE-18) 

CLASS 

shade 
midrange/mixed 

(not used, reserved for mixed) 
Horzpl, Horznl, Horzp2, etc .. . 
Vertpl, Vertnl, Vertp2, etc .. . 
D45pl, D45nl, D45p2, etc .. . 
D135pl, D135nl, D135p2, etc ... 

************************************************************************/ 

#include <stdio.h> 
#include <math.h> 
#include <string.h> 
#include <ctype.h> 
#include <stdlib.h> 

#define MAXBLK 8 
#define MAXIMGW 696 

/* Maximum Block size *1 
/* Maximum Image Width */ 
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/* Function Prototypes */ 
void getrow(FILE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW); 
void getblock(unsigned char A[MAXBLK] [MAXIMGW], unsigned char 

x[MAXBLK][MAXBLK],int g); 
int class (unsigned char x[MAXBLK][MAXBLK)); 
int Horz(int Gv[MAXBLK-l][MAXBLK], int x); 
int Vert(int Gh[MAXBLK] [MAXBLK-l], int x); 
int D45(int Gv[MAXBLK-I][MAXBLK], int Gh[MAXBLK][MAXBLK-I], int x); 
int D135(int Gv[MAXBLK-l][MAXBLK], int Gh[MAXBLK][MAXBLK-l], int x); 
int getmax (int z[2*MAXBLK-4]); 
void fnextend(char fname[50], char patb[30], char fn[lO], char ext[5)); 
void errout(char fname[50]); 

/* Global Variables */ 
int BLKSIZE; /* Block Size */ 
int THL; /* Line Threshold */ 
int THS; /* Shade Threshold */ 

void main(void) 
{ FILE *outfile, *image; 
char fname[50],fn[1O],ans[1O],ftype[5]; 
unsigned char A[MAXBLK][MAXIMGW],x[MAXBLK][MAXBLK]; 
int ij,m,N,M,GL,NI,MI,IDXW,IDXH; 

/* Variables: N 

*/ 

M 
GL 
Nl 
Ml 
IDXW 
IDXH 
Am] 
x[][] 

width of input image 
height of input image 
Maximum gray level 
adjusted image width 
adjusted image height 
width of index image 
height of index image 
row of blocks from image 
current block 
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1* Enter Block Size *1 
printf("\n***** Classification Program *****\n\n"); 
BLKSIZE = MAXBLK + 1; 
while (BLKSIZE>MAXBLK) 

{ printf("Blocksize: "); 
scanf("%d" ,&BLKSIZE); 

} 

/* Set line and shade thresholds */ 
THL = (BLKSIZE+ 1)/2; 
THS = BLKSIZE - 1; 

ans[O] = 'Y'; 
while( toupper( ans[O])-'Y') 

{ 
/* Open files *1 
printf("\nWhat is the input image file? "); 
scanf("%s" ,fn); 
fnextend(fname,"Img\\",fn,".img"); 
if ((image = fopen(fname,"rh"» NULL) errout(fname); 
fscanf(image,"%s %d %d %d",ftype,&N,&M,&GL); fgetc(image); 
if (N)MAXIMGW) 

{ printf("Image Width too large, %d > %d\n",N,MAXIMGW); 
exit(l); 

} 
fnextend(fname,"Classimg\\",fn,".xx"); 
if«outfile = fopen(fname,"wb"»=NULL) errout(fname); 
fputc(BLKSIZE,outfile ); 

1* Initialize Parameters *1 
IDXW = NIBLKSIZE; 
IDXH = MlBLKSIZE; 
Nl = IDXW*BLKSIZE; 
Ml = IDXH*BLKSIZE; 
if «M!=Ml )11(N!=Nl» 

printf("Warning: Non-integral image dimensions (%d,%d) => (%d,%d)\n", 
M,N,Ml,Nl); 
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/* Image classification loop */ 
printf("\nClassifying"); 
for (i=O; i<IDXH; i++) 
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{ getrow(image,A,N); /* read row of blocks */ 
for 0=0; j<IDXW; j++) 

{getblock(A,xj); /* extract current block */ 
m=class(x); /* classify block */ 
fputc(m,outfile); /* write classification */ 

} 
} 

/* Close files & return to top */ 
fclose( outfile); 
fclose( image); 
printf("\ndone\n\nAnother file? "); 
scanfC'%s",ans); 

int class (unsigned char x[MAXBLK][MAXBLK]) 

{ int ij,sh,sv,Vp,Vn,Hp,Hn,Gv[MAXBLK-I)[MAXBLK), 
Gh[MAXBLK) [MAXBLK-I ]; 

float davh,daw,dh,dv,Tsh,Tsv,Teh,Tev; 

1* This subroutine classifies the input block "x" according to 
Ramamurthi and Gersho's Classification algorithm 

Variables: Hp 
Hn 
Vp 
Vn 
sh 
sv 
Gh 
Gv 
davh 
daw 
dh 
dv 
Tsh 

Positive Horizontal Gradient counter, 
Negative Horizontal Gradient counter, 
Positive Vertical Gradient counter, 
Negative Vertical Gradient counter, 
Horizontal Shade counter, 
Vertical Shade counter, 
Horizontal Gradient location table, 
Vertical Gradient location table, 
Average intensity in Horizontal direction, 
Average intensity in Vertical direction, 
horizontal gradient, 
vertical gradient, 
horizontal shade threshold, 
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Tsv vertical shade threshold, 

*/ 

Teh horizontal edge threshold, 
Tev vertical edge threshold. 

Hp = Hn = Vp = Vn = sh = sv = 0; 
for (i=O; i<BLKSIZE; i++) 

for (j=0; j«BLKSIZE-l); j++) { 

1* calculate average intensities and gradients * / 
davh = «int)x[i][j] + (int)x[i][j+ 1 ])/2.0; 
davy = «int)x[j][i] + (int)x[j+ 1 ][i])/2.0; 
if (davh==D.O) davh = (float)0.5; 
if (davv==O.O) daVY = (float)0.5; 
dh = ((int)x[i][j] - (int)x[i][j+ 1])/davh; 
dv = «int)x[j][i] - (int)x[j+ 1 ][i])/davv; 

1* set shade thresholds *1 
if«davh>225.0)llCdavh<30.0)) Tsh = (float)O.I; 
else Tsh = (float)O.025; 
if «davv>225.0)\lCdavv<30.0)) Tsv = (float)O.I; 
else Tsv = (float)O.025; 

1* increment shade counters *1 
if(fabs(dh»Tsh) sh++; 
if(fabs(dv»Tsv) sv++; 

1* set edge thresholds *1 
if (davh>=30.0) Teh = (float)O.2; 
else Teh = 8.0/davh; 
if(davv>=30.0) Tev = (float)0.2; 
else Tev = 8.0/davv; 

1* fill in gradient tables and increment edge counters *1 
if (dh>Teh) 
{ Gh[i][j] = 1; 
Hp++; 
} 

else if (dh<-Teh) 
{ Gh[i][j] = -1; 

Hn++; 
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else Gh[i]fj] = 0; 
if (dv>Tev) 
{ Gvfj][i] = 1; 
Vp++; 
} 

else if (dv<-Tev) 
{ Gvfj][i] = -1; 

Vn++; 
} 

else Gv[j][i] = 0; 
} 
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1*** Classification ladder ***1 
if « sh<THS)&&( sv<THS» 

return(O); 1* shade *1 
else if«(Vp>=THL)&&(Vn>=THL»II«Hp>=THL)&&(Hn>=THL») 

return(2); . /* mixed * / 
else if «Vp<THL )&&(Vn<THL )&&(Hp<THL )&&(Hn<THL» 

retum(l); /* midrange */ 
else if «Vp>=THL )&&(Hp<THL )&&(Hn<THL» 

return(3+2*Horz(Gv,I»; /* positive horizontal */ 
else if «Vn>=THL)&&(Hp<THL)&&(Hn<THL» 

return(4+2*Horz(Gv,-1»; 1* negative horizontal */ 
else if «Hp>=THL )&&(Vp<THL )&&(Vn<THL» 

retum(2*BLKSIZE+ 1+2*Vert(Gh,l); /* positive vertical */ 
else if «Hn>=THL )&&(Vp<THL )&&(Vn<THL» 

return(2*BLKSIZE+2+2*Vert(Gh,-I»; /* negative vertical */ 
else if «Vp>=THL )&&(Hp>=THL» 

retum(4*BLKSIZE-l+2*D45(Gv,Gh,l»; /* positive 45 */ 
else if «Vn>=THL)&&(Hn>=THL» 

retum(4*BLKSIZE+2*D45(Gv,Gh,-1»; 1* negative 45 */ 
else if «Vp>=THL )&&(Hn>=THL» 

return(8*BLKSIZE-9+2*D135(Gv,Gh,I»; /* positive 135 */ 
else if «Vn>=THL )&&(Hp>=THL» 

return(8*BLKSIZE-8+2*D135(Gv,Gh,-1»; /* negative 135 */ 
printf("Error: No c1assification\n"); 
exit(l); 

} 
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void getrow(FlLE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW) 
{ int iJ; 

} 

/* This subroutine gets a row of blocks from image file */ 

for (i=O; i<BLKSIZE; i++) 
for U=O; j<IMGW; j++) 

A[i][j] = fgetc(image); 

void getblock(unsigned char A[MAXBLK][MAXIMGW], 
unsigned char x[MAXBLK] [MAXBLK],int g) 

{ int iJ; 

} 

/* This subroutine gets the gth block from the array A[][] */ 

for (i=O; i<BLKSIZE; i++) 
for U=O; j<BLKSIZE; j++ ) 
x[i][j] = A[i][g*BLKSIZE+j]; 

int Horz(int Gv[MAXBLK-l][MAXBLK], int x) 
{ /* This subroutine finds the location of the horizontal line */ 

} 

intiJ; 
int z[2*MAXBLK-4]; 

for (i=O; i«2*BLKSIZE-4); i++) z[i] = 0; 
for (i=O; i«BLKSIZE-l); i++) 

for U=O; j<BLKSIZE; j++) 
if(Gv[i][j] = x) z[i]++; 

retum(getmax( z»; 

int Vert(int Gh[MAXBLK][MAXBLK-l], int x) 
{ /* This subroutine finds the location of the vertical line */ 

int iJ; 
int z[2*MAXBLK-4]; 
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for (i=O; i«2*BLKSIZE-4); i++) z[i] = 0; 
for (i=O; i«BLKSIZE-l); i++) 
for 0=0; j<BLKSIZE; j++) 

if(Gh[j][i] = x) z[i]++; 
retum(getmax( z»; 

int D45(int Gv[MAXBLK-l][MAXBLK], int Gh[MAXBLK][MAXBLK-l], int x) 
{ /* This subroutine finds the location of the 45 degree line */ 

} 

int ij,q,p; 
int z[2*MAXBLK - 4]; 

p= 1; 
for (i=O; i«BLKSIZE-2); i++) p *= (i+2); 
for (i=O; i«2*BLKSIZE-4); i++) z[i] = 0; 
for (i=O; i<BLKSIZE; i++) 

for 0=0; j«BLKSIZE-l); j++) 
{ q = i+j; 

} 

if « q>O)&&( q<=(BLKSIZE-2») 
{ if«Gh[i][j] = x)&&(Gv[i][j] x» z[q-l]++;} 

else if « q>(BLKSIZE-2) )&&( q<=(2*BLKSIZE-4 ») 
{ if«Gb[i][j] = x)&&(Gv[i-l][j+ 1] x» z[q-l]++;} 

for (i=O; i«BLKSIZE-2); i++) 
{ z[i] *= (p/(i+2»; z[2*BLKSIZE-5 - i] *~ (p/(i+2»); } 

return (getmax(z»; 

int D135(int Gv[MAXBLK-l][MAXBLK], intGh[MAXBLK][MAXBLK-l], int x) 
{ /* This subroutine finds the location of the 135 degree line */ 

int ij,q,p; 
int z[2*MAXBLK - 4]; 

p= 1; 
for (i=O; i«BLKSIZE-2); i++) p *= (i+2); 
for (i=O; i«2*BLKSIZE-4); i++) z[i] = 0; 
for (i=O; i<BLKSIZE; i++) 

for 0=0; j«BLKSIZE-l); j++) 
{ q = i-j; 
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if«q>(2-BLKSIZE»&&(q<1» 
{ if«Gh[i][j] = -x)&&(Gv[i][j+ I] x» z[BLKSIZE-2-q]++;} 

else if « q>O )&&( q«BLKSIZE-I ») 
{ if «Gh[i][j]= -x)&&(Gv[i-I][j] x» z[BLKSIZE-2-q]++;} 

for (i=O; i«BLKSIZE-2); i++) 
{ z[i] *= (p/(i+2»; z[2*BLKSIZE-5 - i] *= (p/(i+2»; } 

return(getmax( z»; 

int getmax (int z[2*MAXBLK-4]) 
{ /* returns the location of the maximum */ 

} 

int i,max; 

max=O; 
for (i=l; i«2*BLKSIZE-4); i++) 

if(z[i]>z[max]) max = i; 
retum(max); 

void fnextend(char fname[50], char path[30], char fu[lO], char ext[5]) 
{ /* Adds directory and extension to filename */ 

} 

strcpy(fuame,path); 
strcat( fname,fn); 
strcat( fname,ext); 

void errout(char fname[50]) 
{ /* Prints error message and terminates execution if file not opened */ 

} 

printf(lI\ncannot open file % s\n II ,fname); 
exit(l ); 
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1********************************************************************* 

Training Pattern Organizer 
Written by Mark Hetherington 

Date: August 31, 1993 

This program sorts the vectors in the training images into files 
corresponding to their classification 

*********************************************************************1 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 

#define MAXBLK 12 
#define MAXVECT 144 
#define MAXIMGW 696 
#define MAXCL 127 
#define CFILES "class4.fn" 

1* Function prototypes * / 

1* maximum block size *1 
/* maximum vector size * / 
/* maximum image width */ 
1* maximum number of classes */ 
/* classification filenames */ 

int getmean(unsigned char x[MAXVECT]); 
int getprdm(unsigned char A[MAXBLK][MAXIMGW],unsigned char Z[MAXIMGW], 

int i, int j); 
void getrow(FILE *image, unsigned char A [MAXBLK] [MAXIMGW], int IMGW); 
void getblock(unsigned char A[MAXBLK][MAXIMGW], 

unsigned char x[MAXVECT],int g); 
void fnextend(char fname[50], char path[30], char fn[10], char ext[5]); 
void errout( char fname[ 50]); 

/* Global Variables */ 
int BLKSIZE, 

VSIZE; 

void main(void) 
{ int ij ,k, v ,nclass,ntrain,m,n,f,M,N, GL,M 1,N 1 ,IDXW,IDXH,NUMCL,prdm,bsz; 
unsigned char A[MAXBLK][MAXIMGW]'z[MAXIMGW],x[MAXVECT]; 
char fname[50],clfn[MAXCL][10],trfn[10][10],ftype[10]; 
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FILE *outfile[MAXCL], *classfile, * fnfil e, *image; 

/* Variables: 

*/ 

nclass 
ntrain 
M 
N 
GL 
MI 
NI 
IDXW 
IDXH 
NUMCL 
A[][] 
Z[] 
x[] 
clfn[][] 
trfn[][] 

number of classes 
number of training patterns 
image width 
image height 
maximum gray level 
adjusted width 
adjusted height 
index image width 
index image height 
number of classes 
row of blocks 
previous row of pixels 
training vector 
array of class filenames 
array of training image filenames 

printf("\n*** Training Set Generation ***\n\n"); 
BLKSIZE = MAXBLK + 1; 
while (BLKSIZE>MAXBLK) 

{ printf("What is the block size: "); 
scanf("%d" ,&BLKSIZE); 

} 
VSIZE = BLKSIZE*BLKSIZE; 
prdm = 2; 
while (prdm> 1 ) 

{ printf("\n(O) actual mean removed.\n(l) predictive mean removed.\n\n"); 
printf("Enter coding type: "); 
scanf("%d" ,&prdm); 

} 
NUMCL = 12*BLKSIZE-17; 
f= (NUMCL+8)/10 + I; 

/* read in class filenames */ 
if«fnfile = fopen(CFILES,"r"))=NULL) errout(CFILES); 
fscanf(fnfile,"%d",&nclass); 
for (i=O; i<nclass; i++) 

fscanf(fnfile,"%s",clfn[i]); 
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fclose(fnfile ); 

/* read in training image filenames * / 
if«fnfile=fopen("trimage.fn","r"»=NULL) errout("trimage.fn"); 
fscanf( fnfile, "%d" ,&ntrain); 
for (i=O; i<ntrain; i++) 

fscanf(fnfile,"%s",trfu[i]); 

for (n= 1; n<f; n++) 
{ /* open class files * / 
for (i=(n-l)*lO; i«n*lO); i++) 

{ if(i<NUMCL) 

} 

{ fnextend(fname,"Trdata\\",clfn[i],".tr"); 
printf("%d) opening %s\n",i,fname); 
if « outfile[ i]=fopen( fname, "wb"» NULL) errout( fname); 

} 

/* sort image blocks into class files */ 
for (k=O; k<ntrain; k++) 

{ 1* open training image *1 
fnextend(fuame,"Img\\",trfu[k],".img"); 
if «image=fopen(fname,"rb"»)=NULL) errout(fname); 
printf("\nreading %s\n" ,fname); 
fscanf(image,"%s %d %d %d",ftype,&M,&N,&GL); 
fgetc( image); 
if (M>MAXIMGW) 

{printf("Image width too large, %d > %d\n",M,MAXIMGW); 
exit(1 ); 

} 

/* open classification file *1 
fnextend(fname,"Classimg\\",trfn[k],".xx"); 
if«c1assfile=fopen(fname,"rb"»=NULL) errout(fname); 
bsz = fgetc( c1assfile); 
if (bsz != BLKSIZE) 

{ printf("ERROR: Inconsistent Block Sizes\n"); 
exit(1); 

} 
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} 
} 

/* set parameters * / 
IDXW = MlBLKSIZE; 
IDXH = NIBLKSIZE; 
Ml = IDXW*BLKSIZE; 
Nl = IDXH*BLKSIZE; 
if ((M!=Ml )11(N!=Nl» 
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printf("Waming: Non-integral image dimensions (%d,%d) -> (%d,%d)\n", 
M,N,Ml,Nl); 

printf("sorting file\n"); 
for (i=O; i<IDXH; i++) 

{ for 0=0; j<M; j++) 

} 

Z[j] = A[BLKSIZE-l][j]; /* save last row of A[][] */ 
getrow(image,A,M); /* get row of blocks */ 
for 0=0; j<IDXW; j++) 

{ getblock(A,xj); /* get block */ 

} 

m=fgetc( classfile); /* read classification * / 
if ((mil O)!=(n-l» continue; 

/* get mean or predict mean and write to file */ 
if (prdm) fputc(getprdm(A,Z,ij),outfile[m D; 
else fputc(getmean( x),outfile[ m D; 

/* write vector to file */ 
for (v=O; v<VSIZE; v++) 

fputc(x[v],outfile[m]); 

fclose( image); 
fclose( classfile); 

} 

/* close files */ 
for (i=(n-l)*lO; i«n*lO); i++) 

if(i<NUMCL) fclose(outfile[i)); 
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int getmean( unsigned char x[MAXVECT]) 
{ int sum,i; 

} 

J* This subroutine returns the mean of the given block *J 

sum =0; 
for (i = 0; i<VSIZE; i++) sum += (int)x[i]; 
return((sum + VSIZEJ2)NSIZE); 

int getprdm(unsigned char A[MAXBLK][MAXIMGW],unsigned char Z[MAXIMGW], 
int i, intj) 

{ int sum,k, v,m,d; 

J* This subroutine returns the predicted mean for current block *J 

m = j*BLKSIZE; 

J* Iffirst block, return actual mean */ 
if(!i && !j) 

{ sum = 0; 
for (1r-0; k<BLKSIZE; k++) 

for (v=O; v<BLKSIZE; v++) 
sum += A[k][m+v]; 

return((sum + VSIZEI2)NSIZE); 
} 

/* Iffirst row or first column, use only four pixels */ 
if(!i II !j) 

{ d = BLKSIZE; 
sum =0; 

} 
else 

{ d = (2*BLKSIZE+ 1); 
sum = Z[m-l]; 

} 
if G) 

for (k=0; k<BLKSJZE; k++) 
sum += A[k][m-l]; 
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if (i) 

} 

for (k=O; k<BLKSIZE; k++) 
sum += Z[m+k]; 

retum«sum + d/2)/d); 
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void getrow(FILE *image, unsigned char A [MAXBLK] [MAXIMGW], int IMGW) 
{ int ij; 

1* This subroutine gets a row of blocks from image *1 

} 

for (i=O; i<BLKSIZE; i++) 
for 0=0; j<IMGW; j++) 

A[i][j] = fgetc(image); 

void getblock(unsigned char A [MAXBLK] [MAXIMGW], 
unsigned char x[MAXVECT],int g) 

{ int ij; 
1* This subroutine gets the gth block from A[][] *1 

for (i=O; i<BLKSIZE; i++) 
for 0=0; j<BLKSIZE; j++) 
x[i*BLKSIZE + j] = A[i][g*BLKSIZE+j]; 

} 

void fnextend(char fname[50], char path[30], char fn[lO], char ext[5]) 
{ 
1* This subroutine adds the directory and extension *1 

} 

strcpy(fname,path); 
strcat(fname,fn); 
strcat(fname,ext); 

void errout(char fname[50]) 
{ /* This subroutine prints error if file not open */ 

} 

print~"\ncannot open file %s\n" ,fname); 
exit(1 ); 
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/******************************************************************* 

Codebook Design Program 
Written by Mark Hetherington 

Date: August 31,1993 

This program is a menu driven program that allows individual design 
of a codebook for each class. Each sub-codebook is written to its own file. 

*******************************************************************/ 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <math.h> 
#include <maIIoc.h> 

#define MAXVECT 64 
#define CBSIZE 1024 
#define MAXCL 80 
#define CFILES "class4.fn" 

/* function prototypes * / 

/* maximum vector size */ 
/* maximum codebook size */ 
/* maximum number of classes */ 
/* classification filenames */ 

float LBG(float _far *cbook[CBSIZE], int nclass, long npat, float tol); 
void writecbook(char fname[50], float _far *cbook[CBSIZE], int nclass); 
int getic (float _far *cbook[CBSIZE],long npat,int *nclass); 
void fnextend(char fname[50], char path[30], char fn[IO], char ext[5]); 
void errout(char fname[50]); 

/* global variables */ 
int VSIZE; /* vector size * / 
float DSTH; /* distance threshold for initial codebook selection */ 
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void main (void) 
{ int i,m,nc1ass,nfile,c1,xtra; 
long npat; 
char fname[50],fnarry[MAXCL] [1 0]; 
float err,tol, _far *cbook[CBSIZE]; 
FILE *classfile, *outfile, *trdata; 

/* 
Variables: cbook codebook 
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err average distortion over training set 
tol convergence tolerence 
npat number of training patterns 
nclass number of classes 

*/ 

printf("\n\n*** LBG TRAINING ***\n\n"); 
VSIZE = MAXVECT + 1; 
while (VSIZE>MAXVECT) 

{ printf("What is the vector size (blocksize/\2): "); 
scanf("%d",& VSIZE); 

} 

1* read classification filenames */ 
if«classfile = fopen(CFILES,"r") NULL) errout(CFILES); 
fscanf( classfile, "%d" ,&nfile); 
for (i=O; i<nfile; i++) 

fscanf( c1assfile, "%s" ,fnarry[ i]); 
fc1ose( classfile); 
strcpy(fnarry[nfile],"QUIT"); 

while(1) 
{ 
/* print menu * / 
printf("\n\n *** CODEBOOK TRAINING ***\n\n"); 
for (i=O; i«(nfile+I)/3); i++) 

printf("(%2d) %6s (%2d) %6s (%2d) %6s\n", 
i,fnarry[i],i+(nfile+ 1 )/3,fnarry[i+(nfile+ 1 )/3], 
i+2*«nfile+ 1)/3),fnarry[i+2*«nfile+ 1)/3)]); 

xtra = nfile + 1 - 3*«nfile+ 1)/3); 
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} 
} 
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for (i=3*((nfile+ 1 )/3); i«3*((nfile+ 1 )/3 )+xtra); i++) 
printf(" (%2d) %6s\n",i,fnarry[i]); 

printf("\n Which class do you want to train: "t 
scanf("%d" ,&cl); 
if (( cl>=nfile )II( cl<O» 

{ printf("\nExit...\n"); 
exit(O); 

} 

/* copy data to ram drive */ 
printf("\n\n\n*** %s ***\n" ,fnarry[ cl]); 
fnextend(fname,"Trdata\\",fnarry[cl],".tr"); 
if ((trdata = fopen(fname,"rh"» NULL) errout(fname); 
if ((outfile = fopen("D:\\trdata.tr","wh"» NULL) 

errout("D:\\trdata. tr"); 
npat=O; m=fgetc(trdata); 
while(! feof( trdata» 

{ fputc(m,outfile); 
npat++; 

} 

for (i=O; i<VSIZE; i++) fputc(fgetc(trdata),outfile); 
m = fgetc(trdata); 

printf("\n%ld patterns in %s\n",npat,fname); 
felose( trdata); 
felose( outfile); 

1* choose initial code book *1 
while(getic( cbook,npat,&nclass»; 

/* LBG *1 
printf("Enter convergence threshold: "); 
scanf("%f' ,&tol); 
err = LBG(cbook,nelass,npat,tol); 
printf("\n%s converged. \nil , fnarry[ el]); 

1* write code book to file *1 
fnextend(fname,"Codebook\\",fnarry[el],".cb"); 
writecbook( fname,chook,nclass); 
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float LBG(float _far *cbook[CBSIZE], int nclass, long npat, float tol) 
{ float diff,x,_far *oldcbook[CBSIZE],trdata[MAXVECT]; 
double err,prerr,dist,mindist; 
int ij,k,m,iter,done,class; 
long z,_far *nvect; 
FILE *trfile; 

/* This subroutine implements the LBG algorithm 

*/ 

The subroutine iterates until the rate of change 
of the average distortion is less than to1. The 
average distortion is returned to the calling program. 

Variables: oldcbook 
trdata 
err 
prerr 
nvect 

codebook from the previous iteration 
current training vector 
average error for current iteration 
average error from previous iteration 
array containing the number of vectors 
in each class 

iter = 0; done = 0; prerr = HUGE_VAL; 
for (i=O; i<nclass; i++) 

{ if(!(oldcbook[i] = (float _far *Lfcalloc(VSIZE,sizeof(float»» 
{ printft"LBG: unable to allocate %dth codeword\n",i); 
exit(l ); 

} 
} 

if (!(nvect = (long _far *Lfcalloc(1024,sizeof(long»» 
{ printf("LBG: unable to a]]ocate counter\n",i); 
exit(l ); 

} 

while (!done) 
{ iter++; 
if «trfile = fopen(ID:\\trdata.tr",lrb"»-NULL) errout("D:\\trdata.tr"); 
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/* initialize codebooks and counters */ 
for (i=O; i<nc1ass; i++) 

{ for 0=0; j<VSIZE; j++ ) 
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{ *(oldcbook[i] + j) = *(cbook[i] + j); 
*(cbook[i] + j) = (float)O.O; 

} 
*(nvect + i) = 0; 

} 

err = 0.0; 
for (z=O; z<npat; z++) 

{ mindist = HUGE_VAL; 

} 

/* read in vector * / 
m = fgetc(trfile); 
for 0=0; j<VSIZE; j++ ) 
trdata[jJ = (float)(fgetc(trfile) - m); 

/* find closest codevector */ 
for U=O; j<nc1ass; j++) 

{ dist = 0.0; 

} 

for (k=O; k<VSIZE; k++) 
{ x = trdata[k] - (*(oldcbook[j] + k»; 
dist += (double)(x*x); 
if (dist>mindist) k=VSIZE; 

} 
if ( dist<mindist) 

{ class = j; 
mindist = dist; 

} 

err += (mindist/«doubJe)VSIZE»; 

/* add vector to class sum and increment class counter* / 
for (k=O; k<VSIZE; k++) 

*(cbook[c1ass] + k) += trdata[k]; 
*(nvect+class) = *(nvect+class) + 1; 

fclose( trfile); 
err I=( (double )npat); 
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/* print class membership */ 
printf("\nclass membership\n"); 
for (i=O~ i<nclass~ i++) 
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printf("vector # %d = %ld\n",i,*(nvect+i»; 
printf("iteration #%d ..... error=%f\n",iter,err); 

} 

/* check for convergence */ 
done = 1; 
for (i=O; i<nclass; i++) 

for U=O; j<VSIZE; j++) 
{ *(cbook[i] + j) /= ((float)(*(nvect+i»); 
if«(done)&&(*(cbook[i]+j) != *(oldcbook[i]+j»)) done = O~ 

} 
diff= (float)(prerr - err)/(err)); 
if (iter> 1) printf("rate of convergence = %f%%\n",diff* 1 00.0); 
if (diff<tol) done = 1; 
prerr = err; 

return «(float)err); 
} 

int getic (float _far *cbook[CBSIZE],long npat,int *nclass) 
{ int i,m,n,v,unique; 
long kj; 
double ex,dist; 
FILE *trdata; 

/* This subroutine selects the initial codebook */ 

printf("\nInitial Codebook Selection\n\n"); 
printf("How many classes? "); 
scanf("%d" ,nclass); 

for (i=O; i«*nclass); i++) 
{ if(!(cbook[i] = (float _far *Lfcalloc(VSIZE,sizeof(float»» 

{ printf("CB: unable to allocate %dth codeword\n",i); 
exit(l); 

} 
} 
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} 
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printf("what is the distance threshold: "); 
scanf("%f' ,&DSTH); 

k=0; 
if «trdata = fopen("D:\\trdata.tr","rb")) NULL) 
errout("D:\ \trdata. tr"); 

for (i=O; i«*nclass); i++) 
{ unique = 0; 
while(!unique) 

{ unique = 1; 

} 

if (k>npat) 
{ printf("%d unable to find a unique set of vectors \nil, i); 
retum(l); 

} 
k++; 

/* read training vector * / 
m = fgetc(trdata); 
for (n=O; n<VSIZE; n++) 

*(cbook[i]+n) = (float)(fgetc(trdata)-m); 
if (feof(trdata» { printf("EOF\n"); exit(l); } 

/* compare distance to current codevectors * / 
for (n=O; n<i; n++) 

{dist = 0.0; 

} 

for (v=0; v<VSIZE; v++) 
{ ex = *(cbook[n]+v) - *(cbook[i]+v); 
dist += ex*ex; 

} 
if (dist<DSTH) 

{ unique = 0; n = i;} 

} 
fclose(trdata); 
printf("\nScanned %ld of%ld patterns.\n\n",k,npat); 
return(O); 
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void writecbook(char fname[50], float _far *cbook[CBSIZE], int nc1ass) 
{ FILE *outfile; 

} 

int ij; 

/* This subroutine writes the codebook to a file */ 

if «outfile = fopen(fname,"w"))-NULL) errout(fname); 
fprintf( outfile,"%d\n" ,nc1ass j; 
for (i=O; i<ncIass; i++) 

for (j=0; j<VSIZE; j++ ) 
fprintf( outfile, "%fut", *( cbook[ i]+j»; 

fc1ose( outfile); 

void fnextend(char fname[50], char path[30], char fn[lO], char ext[5]) 
{ 
/* This subroutine adds the directory and extension * / 

} 

strcpy(fname,path); 
strcat( fname,fn); 
strcat( fname,ext); 

void errout(char fname[50]) 
{ /* This subroutine prints error if file not open */ 

} 

printf("\ncannot open file %s\n",fname); 
exit(l); 
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/******************************************************************** 

CODEBOOK MERGING PROGRAM 

Written By: Mark Hetherington 
Date: August 31, 1993 

This program merges the subcodebooks created by the LBG program. 

********************************************************************/ 

#include <stdio.h> 
#include <string.h> 
#inc1ude <stdlib.h> 

#define CBSIZE 300 
#define VSIZE 16 
#define CFILES "cIass4.fn" 

/* Maximum codebook size */ 
/* Vector size * / 
/* class filename file */ 

void readln (FILE *infile, unsigned char s[31])~ 
void errout(char fname[50])~ 
void fnextend(char fname[50], char patb[30], char fn[IO], char ext[5]); 

void main (void) 
{ int ij,k,nfile,ncI,ncIass; 
float cbook[CBSIZE][VSIZE],z~ 
char fn[lO], fname[50]~ 
FILE *infile, *outfile, *classfile~ 

1* Variables: cbook 
*/ 

concatenated codebook 

if «outfile = fopen("Codebook\\cbook.cb","w"» NULL) 
errout("Codebook\\cbook.cb"); 

if«classfile = fopen(CFILES,"r"» NULL) errout(CFILES); 
fscant\: cIassfile, "%d" ,&nfile)~ 

nclass = O~ 

for (i=O~ i<nfile~ i++) 
{ 1* open current codebook file and get number of codewords *1 
fscanf( c1assfile,"%s" ,fn)~ 



www.manaraa.com

} 
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fnextend(fname,"Codebook\\",fn,".cb")~ 

} 

if «infile = fopen(fname,"r"» NULL) errout(fname)~ 
fscanf(infile, "%d" ,&ncl)~ 

/* read current codebook */ 
for (j=0~ j<ncl; j++) 

for (k=0; k<VSIZE~ k++) 
{ fscanf(infile,"%f',&z); 
cbook[nclass+j][k] = z~ 

} 
nclass += ncl~ 
printtr"class %6s = %2d\n",fn,ncl)~ 

/* write codebook division information * / 
fprintf( outfile, "%d\n" ,nclass)~ 
fclose( infile); 

printf("total codewords = %d\n",nclass); 

/* write merged codebook */ 
for (i=O~ i<nclass~ i++) 

for (j = 0; j<VSIZE~ j++) 
fprintf( outfile, "%f\n" ,cbook[i] [j])~ 

void fnextend(char fname[50], char path[30], char fn[IO], char ext[5]) 
{ 
/* This subroutine adds the directory and extension */ 

} 

strcpy( fname,path)~ 
strcat( fname,fn)~ 
strcat(fname,ext)~ 

void errout(char fname[50]) 
{ /* This subroutine prints error iffile not open */ 

} 

printf("\ncannot open file %s\n",fname)~ 
exit(l )~ 
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/******************************************************************* 

VQ Coding Program 

Written by: Mark Hetherington 
Date: August 31, 1993 

This program codes an input image using a CVQ code book. 

Input Files: Original Image File, Classification File, 
Codebook File 

Output Files: VQ Image, Index File 

Variables: A 
Z 

Contains a row of blocks from image 
Contains the last row of the previous 
row of blocks 

x Block from original image at start of loop, 
VQ block at the end of loop 

y Copy of original block 
z Class number for current block 
cbook CVQ codebook 
cbdiv Class divisions for codebook 
mean Mean of current block 
index Codebook index for current block 

*******************************************************************/ 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 

#define MAXBLK 8 
#define MAXVECT 64 
#define CBSIZE 256 
#define MAXCL 80 

/* Maximum Block Size */ 
/* Maximum vector size = MAXBLK 1\2 * / 
/* Maximum Codebook Size */ 
/* Maximum number of different classes plus one 

= 12*MAXBLK - 16 */ 
#define MAXIMGW 696 /* Maximum Image width */ 
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/* Function prototypes */ 
int getprdm(unsigned char A[MAXBLK][MAXlMGW],unsigned char Z[MAXIMGW], 

int i, int j); 
int getmean(int x[MAXVECT]); 
void getrow(FILE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW); 
void putrow(FILE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW); 
void getblock(unsigned char A[MAXBLK][MAXIMGW], int x[MAXVECT],int g); 
void putblock(unsigned char A[MAXBLK][MAXIMGW], int x[MAXVECT], int g); 
void readcbook(float *cbook[CBSIZE], int cbdiv[MAXCL]); 
void readln (FILE *infile, unsigned char s[31]); 
void errout(char fname[50]); 
void fnextend(char fname[50], char path[30], char fn[lO], char ext[5]); 

/* global variables */ 
int BLKSIZE, VSIZE; 

void main(int argc, char *argv[D 
{ char fn[1O],fname[50],ftype[5]; 
float *cbook[CBSIZE],SNR,ex; 
unsigned char A[MAXBLK][MAXIMGW], Z[MAXIMGW]; 
int ij ,k,z,mean,n,index,v,x[MAXVECT],y[MAXVECT) ,M,N,GL,cbdiv[MAXCL] ; 
int IDXW,IDXH,Ml,Nl; 
unsigned prdm; 
double err,mindist,dist; 
FILE *classfile, *codefile, *image, *cdimg; 

if (argc<2) 
{ printf("\nWbat is the image filename? "); 
scanf("%s",fn); 

} 
else 

strcpy (fn,argv[ 1 ]); 

prdm=2; 
while (prdm> 1 ) 

{printQ"\n(O) actual mean removed.\n(l) predictive mean removed.\n\n"); 
printf("Enter coding type: "); 
scanf("%d" ,&prdm); 

} 
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1* open files *1 
fnextend( fname,"Classimgl" ,fn," .xx"); 
if «classfile = fopen(fuame,"rb"» NULL) errout(fnamet 
fnextend( fname, "Coded/" ,fn,". idx"); 
if «codefile = fopen(fname,"wb"»-NULL) errout(fname); 
fnextend( fname, "Imgl" ,fn, ". img"); 
if «image = fopen(fname,"rb"» NULL) errout(fname); 
fnextend(fname,"Imgl",fn,".VQ"); 
fscanf(image,"%s %d %d %d",ftype,&M,&N,&GL); fgetc(image); 
if(M > MAXIMGW) 

{printf("Image width (%d) > %d\n",M,MAXIMGW); 
exit(l); 

} 

1* Initialize parameters * / 
BLKSIZE = fgetc( c1assfile); 
printf("Block Size: %d\n",BLKSIZE); 
VSIZE = BLKSIZE*BLKSIZE; 
IDXW = MlBLKSIZE; 
IDXH = NIBLKSIZE; 
Nl = IDXH*BLKSIZE; 
Ml = IDXW*BLKSIZE; 
if «M!=Ml )1I(N!=Nl» 

printf("Warning: Reduced image dimensions (%d,%d) => (%d,%d)\n", 
N,M,Nl,Ml); 

/* read codebook * / 
printf("\nreading codebook\n"); 
readcbook( cbook,cbdiv); 

if «cdimg = fopen(fname,"wb"» NULL) errout(fname); 
fprintf(cdimg,"%s\n%d %d\n%d\n",ftype,Ml,Nl,GL); 

printf("\nCoding %s\n",fn); 
err = 0.0; 
for (i=O; i<IDXH; i++) 

{ /* copy last row to Z * / 
for 0=0; j<M;j++) Zfj] = A[BLKSIZE-l]fj]; 

1* read new row from image *1 
getrow( image,A,M); 
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for (j=O;j<IDXW;j++) 
{ /* read classification of block */ 
z = fgetc( classfile); 
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/* get new block, get mean, remove mean from vector *1 
getblock(A,xj); 
if (prdm) mean = getprdm(A,Z,ij); 
else mean = getmean(x); 
for (n=O; n<VSIZE; n++) 

{ y[n] = x[n]; 
x[ n] -= mean; 

} 

/* find closest codevector */ 
mindist = HUGE_VAL; 
for (n=cbdiv[z]; n<cbdiv[z+ 1]; n++) 

{ dist = 0.0; 

} 

for (k=O; k<VSIZE; k++) 
{ ex = ((float)x[k])-(*(cbook[n] + k»; 
dist += (ex*ex); 
if (dist>mindist) k=VSIZE; 

} 
if (dist<mindist) 

{ index = n; 
mindist = dist; 

} 

/* replace original vector with coded vector */ 
for (n=O; n<VSIZE; n++) 

{ v = (int)(*(cbook[index] + n) + mean + 0.5); 
if (v>GL) v = GL; 
if (v<O) v = 0; 
x[n] = v; 

} 

/* put reconstructed vector into image, output codeword index * / 
putblock(A,xj); 
fputc( index,codefile); 
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/* calculate quantization error * / 
dist= 0.0; 
for (n=O; n<VSIZE; n++) 

{ ex = x[n) - y[n); 
dist += (ex*ex); 

} 
err += (dist/((float)VSIZE)); 

} 
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/* write quantized blocks to VQ image */ 
putrow( cdimg,A,M 1 ); 

} 

/* Calculate SNR */ 
err /= ((float)IDXW*IDXH); 
printf("%d %f\n",GL,err); 
SNR = (float)( 1O.0*loglO(((float)GL *GL)/err»; 

printf("\nlmage: %s coded with SNR== %f dB\n",fn,SNR); 
} 

int getmean(int x[MAXVECT]) 
{ int sum,i; 

/* This subroutine returns the mean of the given vector */ 

} 

sum = 0; 
for (i = 0; i<VSIZE; i++) sum += x[i]; 
return((sum + VSIZE/2)NSIZE); 

int getprdm(unsigned char A[MAXBLK][MAXIMGW),unsigned char Z[MAXIMGW), 
int i, int j) 
{ /* This subroutine calculates the predicted mean for block (ij) */ 

float d; 
int sum,k, v,m; 
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120 

/* Iffirst block in image, return actual mean of the block */ 
m = j*BLKSIZE; 
if(!i && !j) 

{sum = 0; 
for (k=0; k<BLKSIZE; k++) 

for (v=O; v<BLKSIZE; v++) 
sum += A[k][ m+v]; 

retum( (sum+ VSIZE/2)NSIZE); 
} 

/* For other blocks, predict mean */ 
if (!i II lj) 

{ d = (float)BLKSIZE; 
sum =0; 

} 
else 

{ d = «float)(2*BLKSIZE + 1»; 
sum = Z[m-1]; 

} 

/* if not left edge of image * / 
ifG) 

for (1r-O; k<BLKSIZE; k++) 
sum += A[k][m-l]; 

/* if not top edge of image * / 
if(i) 

for (k=O; k<BLKSIZE; k++) 
sum += Z[m+k]; 

return«int)(surnld + 0.5»; 

void getrow(FILE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW) 
{ /* This subroutine reads BLKSIZE rows from image */ 

} 

intij; 

for (i=O; i<BLKSIZE; i++) 
for (j=O; j<IMGW; j++) 

A[i][j] = fgetc(image); 



www.manaraa.com

121 

void putrow(FILE *image, unsigned char A[MAXBLK][MAXIMGW], int IMGW) 
{ /* This subroutine writes BLKSIZE rows to image */ 

} 

int ij; 

for (i=O; i<BLKSIZE; i++) 
for (j=0; j<IMGW; j++) 

fputc(A[i]fj],image ); 

void getblock(unsigned char A[MAXBLK][MAXIMGW], int x[MAXVECT],int g) 
{ /* This subroutine copies a block into x */ 

} 

int ij; 

for (i=0; i<BLKSIZE; i++) 
for (j=O; j<BLKSIZE; j++) 
x[i*BLKSIZE+j] = A[i][g*BLKSIZE+j]; 

void puthlock(unsigned char A[MAXBLK][MAXIMGW], int x[MAXVECT], int g) 
{ /* This subroutine places block x into A */ 

} 

int ij; 

for (i=O; i<BLKSIZE; i++) 
for (j=O; j<BLKSIZE; j++ ) 

A[i][g*BLKSIZE+j] = x[i*BLKSIZE+j]; 

void readcbook(float *cbook[CBSIZE], int cbdiv[MAXCLD 
{ /* This subroutine reads the codebook from a file * / 

FILE *infile; 
int ij,NUMCL; 

NUMCL = 12*BLKSIZE-16; 
if((infile = fopen("Codebook/cbook.cb","rlt)) NULL) errout("cbook.cb"); 
cbdiv[O] = 0; 
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fscanf (infile,"%d" ,&cbdiv[i]); 
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printf("%d %d\n" ,NUMCL,cbdiv[NUMCL-l ]); 
for (i=O; i<cbdiv[NUMCL-l]; i++) 

{ if«cbook[i] = malloc(VSIZE*sizeof(float») = NULL) 
{ printf("Error: memory allocation\n"); 
exit(1); 

} 

for (j=O; j<VSIZE; j++ ) 
fscanf(infile,"%f',(cbook[i] + j»; 

} 
fclose(infile ); 

} 

void fnextend(char fname[50], char path[30], char fn[lO], char ext[5]) 
{ 
1* This subroutine adds the directory and extension *1 

} 

strcpy( fname,path); 
strcat(fname,fn); 
strcat(fname,ext); 

void errout( char fname[ 50]) 
{ 1* This subroutine prints error if file not open *1 

} 

printf("\ncannot open file %s\n" ,fname); 
exit(} ); 
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/********************************************************************* 

Arithmetic Coder Subroutine 
Adapted from a subroutine originally written by Dr. T. V. Ramabadran 

This subroutine is used by all of the lossless programs in this thesis. The 
subroutine takes as input the cumulative frequency table to be used, the index of the 
current symbol to be coded, the total number of symbols in the table and a initialization 
parameter. The program performs arithmetic coding using the run-length buffer 
representation and returns the number of output bytes so far. The output bytes are not 
written to a file. They are only counted. 

********************************************************************/ 

#define WIDTH (1 < < 14) 
#define BIT14MSK Ox4000 

#define BIT15MSK Ox8000 
#define BYTESIZE 8 
#define EOF (-1 ) 

/* Width to rescale interval width */ 
/* Bit mask for most significant bit of 

x register * / 
/* Bit mask for carry bit */ 

/* Number of bits /byte */ 
/* end-of-message symbol */ 

int Jcode(int fI], int symbol, int nsymbol,int *start) 
{static unsigned short x; /* start of interval * / 
static unsigned short w; /* width of interval */ 
static short code_byte; /* unfilled byte */ 
static short bit_count; /* number of available bits in code_byte * / 
static short next_bit; /* next bit to be stored * / 
static long runJength; /* run counter */ 
short z; /* interval offset * / 
short code_bit; /* bit shifted from x register */ 
short carry; /* carry flag * / 
short run_bit; /* run bit */ 
int nbyte = 0; /* output byte counter */ 

/* Initialize the static variables on first call */ 
if (*start) 

{ 
x=O; 
w=WIDTH; 
bit count = BYTESIZE + 2; 
run_length = 0; 
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*start = 0; 
} 

1* if not end-of message *1 
if (symboll= EOF) 

{ 
1* if symbol = 0, Z = 0 othenvise calculate z */ 
z = (symbol) ? (2L * (long) w * (long) fTsymbol] + (long) fTnsymhol]) 

I (2L * (long) fInsymholD : 0; 

1* New code point = Old code point + offset */ 
x+=z; 

1* Find new interval width *1 
w = (2L * (long) w * (long) flsymbol + 1] + (long) f[nsymhol]) 

/ (2L * (long) fInsymbol]) - z; 

1* rescale interval width until it is> width *1 
while (w < WIDTH) 

{ 
1* Check for carry over *1 
carry = (x & BIT15MSK)? 1 : 0; 

/* Save most significant bit ofx register *1 
code_hit = (x & BIT14MSK) ? 1 : 0; 

/* rescale start of interval *1 
x «= 1; 

1* remove code_bit from x register *1 
x &= (-BIT15MSK); 

/* rescale interval width */ 
w«= 1; 

1* Ifthere is no carry and the hit shifted out of 
x register is 1, increment run Jength. Go to the 
end of the loop. *1 

if((!carry) && (code_hit» 
{ 
run length++; 
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continue; 
} 

/* If carry occurs, set run bit as 0 */ 
if(carry) { next_bit++; run_bit = 0; } 

/* Otherwise, the run bit is 1 */ 
else run_bit = 1; 

/* shift next bit into data stream and decrement bit count */ 
code_byte «= 1; 
code_byte += next_bit; 
bit_ count--; 

/* if code_byte is full, write to file * / 
if (!bit_ count) 

{ 
/* putchar ( code_byte); * / 
bit_count = BYTESIZE; 
nbyte++; 
} 

/* Set next_bit as bit shifted from x register */ 
next_bit = code_bit; 

/* write out run of digits * / 
while (run_length) 

{ 
run Jength--; 
code_byte «= 1; 
code_byte += run_bit; 
bit_count--; 
if (!bit_ count) 

{ 
/* putchar (code_byte); */ 
bit count = B YTESIZE; 
nbyte++; 
} 1* if *1 

} 1* while *1 
} /* while */ 

} /*if*/ 
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/* If end-of-message symbol occurs, then write out the remaining 
part of the codeword,i.e., next_bit, run, and code_bit, 
to the output file. * / 

else 
{ 
/* check for carry */ 
carry = (x & BIT15MSK) ? 1 : 0; 

/* save most significant bit ofx register */ 
code_bit = (x & BIT14MSK)? 1 : 0; 

/* If carry occurs set run bit as 0 */ 
if(carry) { next_bit++; run_bit = 0; } 

/* Otherwise set run bit as 1 */ 
else run_bit = 1; 

/* Shift next bit into code_byte and decrement bit_count */ 
code_byte «= 1; 
code_byte += next_bit; 
bit_count --; 

/* if code_byte is full, write to file */ 
if (!bit_count) 

{ 
/* putchar ( code_byte); * / 
bit_count = BYTESIZE; 
nbyte++; 
} 

/* Write out run of digits */ 
while (run_length) 

{ 
runJength--; 
code_byte «= 1; 
code_byte += run_bit; 
bit_count --; 
if (!bit_count) 

{ 
/* putchar (code_byte); */ 
bit count = BYTESIZE; 



www.manaraa.com

} 

nbyte++; 
} 

} 
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/* write out bit shifted from x register * / 
code_byte «= J; 
code_byte += code_bit; 
bit_ count--; 

1* fill rest oflast byte with ones */ 
while (bit_count) 

{ 
code_byte «= 1; 
code_byte += 1; 
bit_count--; 
} 

/* putchar (code_byte); */ 
nbyte++; 

} /* else */ 

1* Return number of bytes written out so far */ 
retum(nbyte ); 
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/************************************************************************ 

Memoryless Model Coder 
Adapted from a program originally written by Dr. T.Y. Ramabadran 

This program codes the VQ indices using the memoryless model. 

************************************************************************/ 

#inc1ude <stdio.h> 
#inc1ude <stdlib.h> 

int Jcode(int fl], int symbol, int nsymbol,int *start); 

#define MAXCBSIZE 
#define MAX COUNT 
#define EOF 

512 
(1 « 14) 
(-1 ) 

void main (int argc,char *argv[]) 
{FILE *infile; 
int cC table [MAXCBSIZE],CBSIZE; 
int cur index, count, i, j, start, Ki; 
long insize, outsize; 

/* Read in alphabet size */ 
CBSIZE = MAXCBSIZE+ 1; 
while (CBSIZE>MAXCBSIZE) 

{ printf("Alphabet size: "); 
scanf("%d" ,&CBSIZE); 

} 

/* Read in increment * / 
printf("What is the increment: "); 
scanf("%d" ,&Ki); 

/* open input file * / 
if (!(infile = fopen (argv [l],"rb"») 

/* Maximum Codebook size */ 
/* Maximum frequency count */ 
/* end-of-message symbol */ 

{ fprintf(stderr,"\ncannot open %s\n",argv [1]) ; 
exit (0) ; 

} 
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/* Initialize frequency table to unifonn distribution */ 
for (count = 0 ; count < (CBSIZE+ I) ; count++) 

cCtable [count] = count; 

/* Initialize parameters */ 
start = 1; 
insize = 0; 
outsize = 0; 

/* Read in first byte * / 
cur_index = fgetc(infile); 

/* while data remain, code * / 
while (!feof(infile» 

{ insize++; 

} 

/* call arithmetic coder with current symbol */ 
outsize += Jcode(cCtable,cur_index,CBSIZE,&start); 

/* Update frequency table */ 
for (count = cur_index + I; count < (CBSIZE+ 1); count++) 

cCtable [count] += Ki; 

/* If total count is too large, rescale */ 
if (cC table[CBSIZE] >= MAX_COUNT) 
{ 

} 

for (count = I; count < (CBSIZE + I); count++) 
{ cCtable[count] /= 2; 
if (cCtable[count] - cCtable[count-l] <= 0) 
cf table[count] = cf table[count-l] + I; 

- -
} 

/* Read in next symbol */ 
cur_index = fgetc(infile); 
if (cur _index>= CBSIZE) 

{ printf("Error: Value out of range (%d)\n",curjndex); 
exit(1 ); 

} 
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/* Call arithmetic coder with end of message */ 
outsize += Jcode(cCtable,EOF,CBSlZE,&start); 

fclose (infile); 

printf("\nInput symbols :%ld",insize); 
printf ("\nOutput bytes :%ld",outsize); 

} 
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/************************************************************************ 

First Order Model Coder 
Adapted from a program originally written by Dr. T.V. Ramabadran 

This program codes VQ indices using a first order model with a north neighbor context 

************************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 

#define NROWS 128 1* Number of rows */ 
#define NCOLS 128 1* Number of columns */ 
#define MaxCBSIZE 256 1* Maximum codebook size *1 
#define MAX COUNT (1 « 14) 1* Maximum frequency count *1 
#define EOF (-1 ) /* end-of-message symbol */ 

int Jcode(int f[], int symbol, int nsymbol,int *start); 

main (int argc, char *argv[]) 
{FILE *infile; 
int prow[NCOLS]; 
int crow[NCOLS]; 
int *cC table; 
int table[MaxCBSIZE] [MaxCBSIZE]; 
int context; 
int i, j, count, start; 
long insize, outsize; 

1* Open input file *1 
if (!(infile = fopen (argv [1],"rb"») 

/* previous row of indices *1 
1* current row of indices */ 
1* current cumulative frequency table *1 
/* collection of first order tables * / 
/* current context * / 

{ fprintf(stderr,"\ncannot open %s\n",argv [1]) ; 
exit (0) ; 

} 

/* Read in alphabet size *1 
CBSIZE = MAXCBSIZE+ 1; 
while (CBSIZE>MAXCBSIZE) 

{ printf("Alphabet size: "); 
scanf("%d" ,&CBSIZE); 

} 
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TABLE_SIZE = CBSIZE+l; 

1* Read in increment *1 
printf("What is the increment: "); 
scanf("%d" ,&Ki); 

/* Initialize tables *1 
for (i = 0; i < CBSIZE; i++) 
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for (count = 0; count < TABLE_SIZE; count++) 
table[i][count] = count; 

1* Initialize parameters *1 
start = 1; 
insize = 0; 
outsize = 0; 

for (i = 0; i < NROWS; i++) 
{ 

1* copy current row and read in new row of indices *1 
for 0=0; j<NCOLS; j++) 

{ prow[j] = crow[j]; 
crow[j] = fgetc(infile); 

} 

for 0 = 0; j < NCOLS; j++) 
{ insize++; 

1* Context selection *1 
1* if first block, context=O *1 
if(i = 0) && 0 = 0)) context = 0; 

1* ifleft column, use west neighbor *1 
else if(i = 0) context = crowU-I]; 

1* Otherwise use north neighbor *1 
else context = prowU]; 

1* use appropriate table *1 
cCtable = table[context]; 

1* Code symbol *1 
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outsize += Jcode(cCtable,crow[j],CBSIZE,&start); 

/* Update table */ 
for (count = crow[j] + ]; count < TABLE_SIZE; count++) 

cCtable [count] += Ki; 

/* If total count is too large, rescale *1 
if(cCtable[CBSIZE] >= MAX_COUNT) 

{ for (count = 1; count < TABLE_SIZE; count++) 
{ cCtable[count] /= 2; 

} 
} 

if(cCtable[count] - cCtable[count-l] <= 0) 
cC table[ count] = cC table[ count-I] + 1; 

} /*for j*/ 
} I*for i*1 

1* Call coder with end-of-message *1 
outsize += Jcode(cCtable,EOF,CBSIZE,&start); 

fclose (infile); 

printf ("\nInput symbols: %ld" ,insize); 
printf("\nOutput bytes: %ld",outsize); 

} /*main*1 
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1********************************************************************** 
Classification Index Compression Program 

Adapted from a program originally written by Dr. T.V. Ramabadran 

The program compresses the classification index for the two step method. 

***********************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 

#define NROWS 
#define NCOLS 
#define NCLASS 
#define IDX SIZE 
#define TABLE SIZE 
#define MAX COUNT 
#define TERMINAL 
#define INTERNAL 
#define STRG SIZE 
#define MAX DEPTH 
#define MSB MASK 
#define EOF 
#define NULL 

main (int argc,char *argv[]) 
{FILE *infile; 
int prow[NCOLS]; 
int crow[NCOLS]; 
int Ki; 
int Kt; 
intNc; 
int cntxt_strg[STRG_SIZE]; 
int *cCtable, new jndex; 

128 
128 
10 
4 
(NCLASS + 1) 
(l « 14) 
1 
o 
(4*IDX_SIZE) 
STRG SIZE 
Ox08 
(-1) 
o 

/*Number ofrows*/ 
/*Number of columns*/ 
/* Number of Loss less classes */ 
/* Number of bits for class index */ 
/* Table size */ 
/* Maximum Frequency Count */ 
/* terminal node * / 
/* internal node * / 
/* Size of sting */ 
/* Maximum tree depth * / 
/* Most significant bit mask */ 
/* End-of-message symbol */ 

/* previous row of indices * / 
/* current row of indices * / 
/* Increment * / 
/* Context threshold */ 
/* Maximum number of contexts * / 
/* Context string */ 

int cur_index, num jndex, tmp jndex; 
int start, ncntx; 
int i, j, count, depth; 
int insize, outsize; 
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1* Define the node structure *1 
struct n struct 
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{int ntype; 
int ctx _count; 

1* Node Type: INTERNAL or TERMINAL *1 
/* Number of times node is visited */ 

struct n_ struct *cO .-J)tr; 
struct n_struct *c1""'ptr; 
int *tbl.-J)tr; 
int max -'prob; 

}; 

1* 0 child pointer *1 
/* 1 child pointer *1 
1* Pointer to context table *1 
/* Maximum probability in table *1 

typedef struct n_struct NODE, *NodePtr; 
NodePtr rootytr, cur -.ptr, tmp ytr; 

1* Open input file (classification file)* 1 
if (!(infile = fopen (argv [l],"rh"») 

{ fprintf(stderr,"\ncannot open %s\n",argv [1]) ; 
exit (0) ; 

} 

fgetc(infile); 1* Remove blocksize byte *1 

1* Enter parameters *1 
printf("What is the increment (Ki): "); 
scanf("%d" ,&Ki); 

printf("What is the count threshold (Kt): "); 
scanf("%d" ,&Kt); 

printf("How many contexts (Nc): "); 
scanf("%d" ,&Nc); 

1* Tree initialization. Root Node */ 
rootytr = (NodePtr) malloc (sizeof(NODE»; 
root-.ptr -> ntype = TERMINAL; 
rootytr -> ctx _count = 0; 
root-.ptr -> cO ytr = NULL; 
rootytr -> c l.-J)tr = NULL; 
root-.ptr -> tbl""'ptr = (int *) malloc (sizeof(int)*TABLE_SIZE); 
rootytr -> max""'prob = 0; 
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/* Initialize table for root node */ 
cC table = root-.ptr -> tbl~tr; 
for (count = O~ count < TABLE _ SIZE~ count++) 

cCtable[count] = count; 

/* Initialize parameters * / 
start = 1; 
num _index = NCLASS~ 
ncntx = 1; 
insize = 0; 
outsize = 0; 

for (i=O; i<NROWS; i++) 
{ /* Copy current row and read in new row of indices */ 
for U=O; j<NCOLS; j++) 

{ prow[j]=crow[j]; 
crow[j]=fgetc(infile ); 

} 

for U=O; j<NCOLS; j++) 
{cur_index = crow[j]; 
insize++; 
if (curjndex > 1) curjndex--; 

/* Find new class index */ 
if «cur_index = 0) II (cur_index = 1» 
new_index = cur_index; /* Shade or Midrange */ 

else if «cur_index = 2) II (cur_index = 4) II (cur_index = 6» 
new jndex = 2; /* Positive Horizontal */ 

else if «curjndex = 3) II (cur_index = 5) II (cur_index = 7» 
new_index = 3; /* Negative Horizontal */ 

else if «cur_index = 8) II (curjndex = 10) II (cur_index = 12» 
newjndex =4; /* Positive Vertical *! 

else if «cur_index = 9) /I (cur_index = 11) II (cur_index = 13» 
new_index = 5; /* Negative Vertical */ 

else if«curjndex = 14) II (curjndex = 16) II 
(cUT_index = 18) II (cur_index = 20» 

newjndex = 6; /* Positive 45 degrees */ 
else if «cur_index = 15) II (cur_index = 17) II 

(cur_index = 19) II (cur_index = 21» 
new jndex = 7; /* Negative 45 degrees */ 
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else if ((curjndex = 22) II (curjndex = 24) II 
(cur_index = 26) II (cur_index = 28)) 

new_index = 8; /* Positive 135 degrees */ 
else 

/* Negative 135 degrees */ 

crow[j] = new_index; 
cur_index = new jndex; 

/* Fill Context String */ 
if((i = 0) && G = 0)) 

{ /* If upper left comer block, fill string with zeros */ 
for (count = 0; count < STRG SIZE; count++) 

cntxt_strg[count] = 0; 
} 

else if(i = 0) 
{ /* if top row */ 
/* clear string */ 

} 

for (count = 0; count < STRG SIZE; count++) 
cntxt_strg[count] = 0; 

/* Place West neighbor into string * / 
tmp_index = crow[j-1]; 
for (count = 0; count < IDX _SIZE; count++) 

{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 

/* ifnot second column, add second West neighbor to string */ 
ifG> 1) 

{ tmp_index = crow[j-2]; 

} 

for (count = IDX_SIZE; count < 2*IDX_SIZE; count++) 
{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmp index «= 1; 

} 

else ifG = 0) 
{ /* Ifleft column */ 
/* clear string */ 
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for (count = 0; count < STRG _SIZE; count++) 
cntxt_strg[count] = 0; 

/* Place north neighbor into string */ 
tmp_index = prow[j]; 
for (count = 0; count < IDX _SIZE; count++) 

{ cntxt_strg[count] = (tmp_index & MSB_MASK)? 1: 0; 
tmp_index «= 1; 

} 

/* If not second row, add second North neighbor */ 
if(i> 1) 

{ tmp _index = vqimage[i-2][j]; 

} 

for (count = IDX_SIZE; count < 2*IDX_SIZE; count++) 
{ cntxt_strg[count] = (tmp_index & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 

else ifG < 127) 
{ /* If not right row */ 
/* clear string */ 
for (count = 0; count < STRG _SIZE; count++) 

cntxt_strg[count] = 0; 

/* Place North neighbor into string */ 
tmp_index = prow[j]; 
for (count = 0; count < IDX _SIZE; count++) 

{cntxt_strg[count] = (tmp_index & MSB_MASK)? 1 : 0; 
tmp _index «= 1; 

} 

/* Place West neighbor into string * / 
tmp_index = crow[j-l]; 
for (count = IDX _SIZE; count < 2*IDX _SIZE; count++) 

{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 
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1* Place Northeast neighbor into string *1 
tmp_index = prow[j+ 1]; 
for (count = 2*IDX_SIZE; count < 3*IDX_SIZE; count++) 

{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmpjndex «= 1; 

} 

1* Place Northwest neighbor into string */ 
tmp_index = prow[j-lJ; 
for (count = 3*IDX_SIZE; count < 4*IDX_SIZE; count++) 

{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 

else 

} 

{ /* Ifright column */ 
1* clear string *1 
for (count = 0; count < STRG _SIZE; count++) 
cntxt_strg[count] = 0; 

1* Place North neighbor into string *1 
tmp_index = prow[j]; 
for (count = 0; count < IDX _SIZE; count++) 

{ cntxt_strg[count] = (tmp_index & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 

/* Place West neighbor into string */ 
tmp_index = crow[j-1]; 
for (count = IDX _SIZE; count < 2*IDX _SIZE; count++) 

{ cntxt_strg[count] = (tmp_index & MSB_MASK)? 1 : 0; 
tmpjndex «= 1; 

} 

/* Place Northwest neighbor into string */ 
tmp_index = prow[j-1]; 
for (count = 2*IDX_SIZE; count < 3*IDX_SIZE; count++) 

{ cntxt_strg[count] = (tmpjndex & MSB_MASK)? 1 : 0; 
tmp_index «= 1; 

} 
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/* Find the context and code the index. Update the statistics */ 

/* Start at top of tree * / 
cur ~tr = root~tr; depth = 0; 

/* Decend tree to a terminal node * / 
while «cur~tr -> ntype = INTERNAL) && (depth < MAX_DEPTH)) 

cur ~tr = (cntxt_ strg[ depth++])? cur ~tr -> c 1 ~tr: cur --'ptr -> cO --'ptr; 

/* Use table from selected context */ 
cC table = cur ~tr -> tbl--'ptr; 

/* Code classification index */ 
outsize += Jcode(cCtable,cur_index,num_index,&start); 

/* Update statistics */ 
for (count = cur_index + 1; count < TABLE_SIZE; count++) 
cC table [count] += Ki; 

/* Update max --'prob * / 
if (cC table[ cur _index+ 1 ]-cC table[ cur_index] > cur --.ptr -> max --'prob) 

cur --.ptr -> max --'prob = cC table[ cur _index+ 1 ]-cC table[ cur_index]; 

/* If total count is too large, rescale * / 
if (cC table[T ABLE_SIZE - 1] >= MAX_COUNT) 

{ for (count = 1; count < TABLE_SIZE; count++) 
{ cCtable[count] /= 2; 

} 
} 

if(cCtable[count] - cCtable[count-l] <= 0) 
cf table[count] = cf table[count-l] + 1; - -

/*If appropriate conditions are satisfied, generate new contexts*/ 

/* Increment count in current context * / 
(cur--'ptr -> ctx_count)++; 
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/* If count>Kt and Number of contexts < Nc and 
not full depth, create new context * / 

if((cur~tr -> ctx_count >= Kt) && (depth < MAX_DEPTH) && 
(ncntx < Nc)) 

{ /* convert to internal node and create children */ 
cur ---'ptr -> ntype = INTERNAL; 
cur ---.ptr -> cO -.J)tr = (NodePtr) malloc (sizeof(NODE)); 
cur---.ptr -> cl-.J)tr = (NodePtr) malloc (sizeof(NODE)); 

/* Initialize 0 child */ 
tmp ~tr = cur ---'ptr; 
cur ---.ptr = tmp ---.ptr -> cO -.J)tr; 
cur ---.ptr -> ntype = TERMINAL; 
cur---'ptr -> ctx_count = 0; 
cur ---'ptr -> cO -.J)tr = NULL; 
cur ---'ptr -> c l-.J)tr = NULL; 
cur---.ptr -> tbl-.J)tr = tmp-.J)tr -> tbl-.J)tr; 
cCtable = cur---.ptr -> tbl-.J)tr; 
for (count = 0; count < TABLE_SIZE; count++) 

cCtable[count] = count; 

/* Initialize 1 child */ 
cur ---.ptr = tmp ---.ptr -> c l-.J)tr; 
cur ---'ptr -> ntype = TERMINAL; 
cur ---'ptr -> ctx _count = 0; 
cur ---'ptr -> cO -.J)tr = NULL; 
cur ---'ptr -> c l-.J)tr = NULL; 
cur---.ptr -> tbl-.J)tr = (int *) malloc (sizeof(int)*TABLE_SIZE); 
cC table = cur ---.ptr -> tbl-.J)tr; 
for (count = 0; count < TABLE_SIZE; count++) 

cCtable[count] = count; 

ncntx++; 

} /*if*/ 
} 1* for j*/ 

} /*for i*/ 

/* Code end-of-message */ 
outsize += Jcode(cCtable,EOF,num_index,&start); 
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/********************************************************************* 
Sub-codebook Index Compression Program 

Adapted from a program originally written by Dr. T.v. Ramabadran 

The program compresses the sub-codebook index for the two step method 

*********************************************************************1 
#include <stdio.h> 
#include <stdlib.h> 

#define NROWS 128 /*Number ofrows*1 
#define NCOLS 128 I*Number of columns*1 
# define CLASS SIZE 30 1* Original number of classes *1 
#define NCLASS 10 /* Number of new classes *1 
#define CLASSO SIZE 4 /* Number of codevectors in each class *1 
#define CLASSI SIZE 18 
#define CLASS2 SIZE 3 
#define CLASS3 SIZE 3 
#define CLASS4 SIZE 3 
#define CLASS5 SIZE 3 
#define CLASS6 SIZE 3 
#define CLASS7 SIZE 3 
#define CLASS8 SIZE 4 
#define CLASS9 SIZE 4 
#define CLASSlO SIZE 4 
#define CLASSII SIZE 4 
#define CLASS12 SIZE 4 
#define CLASSl3 SIZE 4 
#define CLASS14 SIZE 4 
# define CLASS15 SIZE 4 
# define CLASSl6 SIZE 4 
#define CLASS 17 SIZE 4 
#define CLASS18 SIZE 4 
#define CLASS19 SIZE 4 
# define CLASS20 _SIZE 4 
#defme CLASS21 SIZE 4 
#define CLASS22 SIZE 4 
# define CLASS23 SIZE 4 
#define CLASS24 SIZE 4 
# define CLASS25 _SIZE 4 
#define CLASS26 SIZE 4 
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4 
4 
4 

#define CLASS27 SIZE 
#define CLASS28 SIZE 
#define CLASS29 SIZE 
#define EDG SIZE 
#define MAX COUNT 
#define EOF (-1) 

16 
1023 

/*maximum size of edge classes*/ 
/* maximum frequency count * / 

main (int argc,char *argv[]) 
{FILE *infile; 
int cl_crow[NCOLS]; 
int cl~row[NCOLS]; 
int scb_crow[NCOLS]; 
int scb_crow[NCOLS]; 
int cbdiv[ CLASS_SIZE + 1 ]; 
int cur_class; 
int new_class; 
int cur_index; 
int class_size; 

/* current classification index row */ 
/* previous classification index row */ 
/* current sub-codebook index row */ 
/* previous sub-codebook index row */ 
/* codebook division array */ 
/* current classification index */ 
/* new classification */ 
/* current index * / 
/* size of current class * / 

int context; /* context * / 
int *cCtable; /* cum frequency table */ 
int shdtable[CLASSO_SIZE+ l][CLASSO_SIZE+ 1]; /* shade table */ 
int midtable[CLASSl_SIZE+ I][CLASSI_SIZE+ 1]; /* midrange table */ 
int edgetable[NCLASS] [EDG_SIZE+ I][EDG_SIZE+ 1]; /* edge tables */ 
int i, j, count, start; 
long insize, outsize; 

/* Open input file * / 
if (!(infile = fopen (argv [l],"rb"») 

{ fprintf(stderr,"\ncannot open %s\n",argv [1]) ; 
exit (0) ; 

} 

1* Enter parameters * / 
printf("What is the increment (Ki): "); 
scanf("%d" ,&Ki); 

/* Set up codebook division array */ 
cbdiv[O] = 0; 
cbdiv[I] = cbdiv[O] + CLASSO_SIZE; 
cbdiv[2] = cbdiv[I] + CLASS I_SIZE; 
cbdiv[3] = cbdiv[2] + CLASS2 _SIZE; 
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cbdiv[4] = cbdiv[3] + CLASS3 SIZE; 
cbdiv[5] = cbdiv[4] + CLASS4_SIZE; 
cbdiv[6] = cbdiv[5] + CLASS5 SIZE; 
cbdiv[7J = cbdiv[6J + CLASS6 SIZE; 
cbdiv[8] = cbdiv[7] + CLASS7 SIZE; 
cbdiv[9] = cbdiv[8] + CLASSS SIZE; 
cbdiv[IO] = cbdiv[9] + CLASS9 _SIZE; 
cbdiv[ll] = cbdiv[lO] + CLASSIO SIZE; 
cbdiv[l2] = cbdiv[ll] + CLASS!l SIZE; 
cbdiv[13] = cbdiv[12] + CLASSI2_SIZE; 
cbdiv[l4] = cbdiv[13] + CLASS13_SIZE; 
cbdiv[15] = cbdiv[14] + CLASSI4_SIZE; 
cbdiv[l6] = cbdiv[15] + CLASS15_SIZE; 
cbdiv[17] = cbdiv[16] + CLASS16_SIZE; 
cbdiv[ IS] = cbdiv[ 17] + CLASS 17 SIZE; 
cbdiv[19] = cbdiv[IS] + CLASS1S_SIZE; 
cbdiv[20] = cbdiv[19] + CLASS19 _SIZE; 
cbdiv[2l] = cbdiv[20] + CLASS20_SIZE; 
cbdiv[22] = cbdiv[21] + CLASS21_SIZE; 
cbdiv[23] = cbdiv[22] + CLASS22_SIZE; 
cbdiv[24] = cbdiv[23] + CLASS23_SIZE; 
cbdiv[25] = cbdiv[24] + CLASS24_SIZE; 
cbdiv[26] = cbdiv[25] + CLASS25 _SIZE; 
cbdiv[27] = cbdiv[26] + CLASS26 _SIZE; 
cbdiv[28] = cbdiv[27] + CLASS27 _SIZE; 
cbdiv[29] = cbdiv[28] + CLASS28_SIZE; 
cbdiv[30] = cbdiv[29] + CLASS29 _SIZE; 

1* Initialize tables */ 
for (i = 0; i <= CLASSO _SIZE; i++) 

for (count = 0; count <= CLASSO _SIZE; count++) 
shdtable[i][countJ = count; 

for (i = 0; i <= CLASS I_SIZE; i++) 
for (count = 0; count <= CLASS I_SIZE; count++) 

midtable[i][count] = count; 

for (i = 0; i < NCLASS; i++) 
forU =O;j <=EDG __ SIZE;j++) 

for (count = 0; count <= EDG_SIZE; count++) 
edgetabJe[i][j][count] = count; 
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/* Initialize Parameters */ 
start = 1; 
insize = 0; 
outsize = 0; 

for (i=O; i<NROWS; i++) 
{ /* Copy current row and read in new row of indices */ 

for (j=0; j<NCOLS; j++ ) 
{ cIyrow[j]=crow[j]; 

} 

cl_ crow[j]=fgetc(infile); 
scb ---'prow[j]=scb _ crow[j]; 

for U = 0; j < NCOLS; j++) 
{ cur_index = cl_crow[j]; 
insize++; 

1* Find current class *1 
for (count=O; count<CLASS _SIZE; count++) 
if (curjndex >= cbdiv[countD && (cur_index < cbdiv[count+ 1]) 

{ cur_class = count; 

} 

class_size = cbdiv[count+ 1] - cbdiv[count]; 
break; 

/* renumber starting at zero * / 
cur_index = cur jndex - cbdiv[ cur_class t 

/* Find current classification and adjust sub-codebook index */ 
if « cur _ class==O)Il( cur _ class= 1» 

new_class = cur_class; /* Shade or Midrange * / 
else if « cur _ class-2 )II( cur _ class=4 )II( cur _ class=6» 

{ new_class = 2; /* Positive Horizontal */ 
class size = CLASS2 SIZE+CLASS4 SIZE+CLASS6 SIZE· - - - -' 
if (cur_class 4) cur jndex += CLASS2 _SIZE; 
if (cur_class=6) curjndex += CLASS2_SIZE + CLASS4_SIZE; 

} 
else if (cur _ class=3 )II( cur _ class=5 )II( cur _ class=7» 

{ new_class = 3; /* Negative Horizontal */ 
class_size = CLASS3 _ SIZE+CLASS5 _SIZE +CLASS7 _SIZE; 
if (cur _ class=5) cur_index += CLASS3 _SIZE; 
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if(cUf class=7) cur index += CLASS3 SIZE + CLASS5 SIZE-- - - -' 
} 

else if « cur _ class=8)11( cur _ class= 1 0 )11< cur _ c lass= 12) 
{ new_class = 4; /* Positive Vertical */ 
class size = CLASS8 SIZE+CLASSI0 SIZE+CLASSI2 SIZE-

- - - -' 
if(cur_class=10) cur_index += CLASS8_SIZE; 
if (cur _ class= 12) cur_index += CLASS8 _SIZE + CLASS 1 0 _SIZE; 

} 
else if «cur _ class-9 )11( cur _ c1ass= 11 )II( cur _ class= 13» 

{ new_class = 5; /* Negative Vertical */ 

} 

class_size = CLASS9 _ SIZE+CLASS 11_ SIZE+CLASS 13 _SIZE; 
if(cUf class=11) cur index += CLASS9 SIZE; - - -
if (cUf_class=13) cur_index += CLASS9 _SIZE + CLASSl1_SIZE; 

else if «cur _ class= 14 )II( cur _ class= 16 )11 
( cur _ class= 18 )II( cur _ class-20» 

{ new_class = 6; /* Positive 45 degrees */ 
class size = CLASS14 SIZE+CLASSI6 SIZE+ - - -

CLASS 18_ SIZE +CLASS20 _SIZE; 
if(cur class=16) cur index += CLASS 14 SIZE; - - -
if(cUf_class=18) cur_index += CLASSI4_SIZE+CLASSI6_SIZE; 
if (cur class 20) cur index += CLASS 14 SIZE+ - - -

CLASS 16 SIZE +CLASS 18 SIZE; - -
} 

else if «cur _class= 15)11( cur _ class= 17)11 
(cur_class=19)I!(cur_class=21» 

{ new_class = 7; /* Negative 45 degrees */ 

} 

class size = CLASS15 SIZE+CLASSI7 SIZE+ - - -
CLASS 19 _SIZE +CLASS21_ SIZE; 

if (cur _ class= 17) cur_index += CLASS 15_ SIZE; 
if(cur_class=19) cur_index += CLASS15_SIZE+CLASS17_SIZE; 
if (cUf_class=21) cur_index += CLASS15_SIZE+ 

CLASS17 _SIZE+CLASSI9 _SIZE; 

else if « cur _ class=22 )II( cur _ class=24 )11 
(cur _ class-26)11( cur _ class=28» 

{ new_class = 8; /* Positive 135 degrees */ 
class_size = CLASS22 _ SIZE+CLASS24 _ SIZE+ 

CLASS26 _SIZE +CLASS28 _SIZE; 
if (cur_class=24) cur_index += CLASS22_SIZE; 
if (cur_class=26) cur_index += CLASS22_SIZE+CLASS24_SIZE; 
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if (cur_class=28) cur_index += CLASS22_SIZE+ 
CLASS24 _SIZE +CLASS26 _SIZE; 

} 
else 

{ new_class = 9; /* Negative 135 degrees */ 
class size = CLASS23 SIZE+CLASS25 SIZE+ - - -

CLASS27 _ SIZE+CLASS29 _SIZE; 
if (cur _ class=25) cur_index += CLASS23 _SIZE; 
if (cUf_class-27) cur_index += CLASS23_SIZE+CLASS25_SIZE; 
if(cUf_class=29) cur_index += CLASS23_SIZE+ 

} 

cl_crow[j] = new_class; 
scb _ crow[j] = cur_index; 

/* Context Selection */ 
/* Check North neighbor */ 

CLASS25 _SIZE+CLASS27 _SIZE; 

if((i > 0) && (new_class = ctprow[j]) 
context = scb ..JJrow[j]; 

/* Check West neighbor * / 
else ifW > 0) && (new_class = c1_crow[j-l]) 

context = scb_crow[j-l]; 

/* Check Northeast neighbor */ 
else if((i > 0) && (j < 127) && (new_class = cl..JJrow[j+ 1]) 

context = scb ..JJrow[j+ 1]; 

/* Check Northwest neighbor */ 
else if((i > 0) && (j > 0) && (new_class = c1..JJrow[j-I]) 

context = scb ..JJrow[j-l]; 

/* If no match, choose null context * / 
else 

context = class_size; 

/* Choose appropriate table */ 
if (new_class = 0) 
cC table = shdtable[ context]; 
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cCtable = edgetable[new_class][contextJ; 

/* Code sub-codebook index * / 
outsize += Jcode( cC table,cur _index, class _ size,&start); 

/* Update statistics */ 
for (count = cur_index + 1; count <= class_size; count++) 

cCtable[count] += Ki; 

/* Iftotal count is too large, rescale */ 
if(cCtable[class_size] >= MAX_COUNT) 

for (count = 1; count <= class_size; count++) 
{ cCtable[count] /= 2; 

} 

if((cCtable[count] - cCtable[count-l]) <= 0) 
cCtable[count] = cCtable[count-1J + 1; 

} /*for j*/ 
} /*for i*/ 

/* Code end-of-message * / 
outsize += Jcode( cC table,EOF ,class _ size,&start); 

fclose (infile); 

printf ("\nInput symbols :%ld" ,insize); 
printf ("\nOutput bytes :%ld" ,outsize); 

} /* main */ 
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